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1 INTRODUCTION 

1.1 OVERVIEW 

Providing access and mobility for key installations and businesses located in cities become 

a challenge when there is limited public transport and non-motorized facilities.  The challenges are 

significant in cities that are subjected to severe winter weather conditions.  According to Neilsen 

(2014), 62% of millennials prefer to live in urban centers.  APA (2014) indicated that 56% of 

millennials and 46% of active boomers prefer to live in walkable, technology-enabled cities where 

they have affordable and convenient transportation options regardless of the size of the city.  In 

addition to alternative affordable transportation options, 81% of millennials and 76% of active 

boomers prefer non-motorized vehicles over cars for their daily activities.  Fifty six percent (56%) 

of millennials want to see improvements to sidewalks and bike lanes to enhance safety.  Lack of 

mobility can significantly affect the small and medium size cities economically due to migration 

of millennials to larger cities around the country.  Arlington, New Orleans, San Francisco, and 

Denver reported an 82%, 71%, 68%, and 57% increase in the millennial population from 2007 to 

2013, respectively.  In general, millennials are more likely to move into more walkable urban areas 

than to suburbs.  

The size of a city is determined based on the population.  According to RCEP (2007), a 

large city has a population of more than 250,000.  A medium city has a population ranging from 

50,000 to 250,000 and a small city has a population ranging from 10,000 to 50,000.  Many large 

and small cities around the world have utilized infrastructure and technology to promote mobility 

and sustainability.  A majority of large and medium size cities uses rapid transit systems, metro 

bus systems, different types of ride sharing programs, and automated people mover technologies, 

etc.    

The latest technology for enhancing mobility, although beginning development in the 

1950’s, is the automatic people mover system (Sproule 2004).  Major cities in Canada and North 

America have developed automated mover technology for the city dwellers.  For example, Detroit 

People Mover (DPM) was launched in 1987 by connecting thirteen stations in Downtown, Detroit 

with 41 ft long (Mark I) cars.  Automated Light Rapid Transit (ALRT) technology was also 

initiated to run the same program at the same time in Toronto (Scarborough) and Vancouver.  In 

addition to developing mass transit systems, the personal rapid transit (PRT) system is now widely 
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used to carry 2-4 persons with luggage for different purposes along defined routes within cities 

(Muller 2007).  The most recent effort is to develop bike-share programs to enhance mobility 

within cities.  

Many cities with extreme weather conditions such as Toronto in Canada (with cold winter) 

and Oklahoma City in the United States (with windy conditions) have developed Underground 

Pedestrian Systems (UPSs) through a network of pedestrian tunnels by connecting several 

buildings in downtown area.  Similarly, the UPS in Montreal (Canada) provides a passage between 

several office buildings, shopping centers, and transportation systems.  Winnipeg (Canada) is 

another city with a UPS that links all four corners of the city’s main office district.  In addition to 

using underground and covered facilities, several other alternatives have been proposed or used 

around the world – a floating bike path for the city of London and an elevated cycle “freeway” in 

Melbourne, Australia.  Every project does not necessarily yield the expected benefits.  As an 

example, the monorail system in Las Vegas is not widely used by the public; whereas the ‘Personal 

Rapid Transit system’ in West Virginia has been a large success.  It is therefore vital to explore 

alternative infrastructure options implemented in various cities in order to understand the 

motivating factors for implementation, methods of funding, and documented implementation and 

maintenance challenges.  It is important to understand the planning aspects to identify the methods 

of integrating selected infrastructure within the current layout and future plans of a city.  Proper 

planning allows pedestrians to enter a downtown area at entry links near car parks, bus stops, bike 

sheds, railway stations, and so on.  Non-motorized traffic in underground pedestrian systems could 

be increased by integrating shopping streets, entertainment facilities, or public transport systems.  

Moreover, educating the public, winning their support, and getting them involved throughout the 

process is vital for successful implementation.  

Another aspect of developing sustainable livable cities is the use of renewable energy 

sources for lighting, heating, cooling, and operation of infrastructure.  In 2009, International 

Energy Agency (IEA) compiled a report with a review of state-of-the-art technologies, methods of 

identifying local renewable energy resources, and strategies to overcome implementation barriers 

(IEA 2009).  The technologies listed in the report include district heating and cooling (i.e., 

integration of heat and power renewable energy sources at a relatively large scale); distributed 

generation mainly from solar, wind, geothermal and biomass; smart metering; intelligent networks; 

and biofuel production.  Also, Droege (2010) developed a report on 100% Renewable Energy and 
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Beyond for Cities.  Since every city is different in many ways, learning from global and local 

efforts to utilizing renewable energy is needed to adopt such technologies for the betterment of a 

specific city.  While some cities had success in integrating such technologies during the initial 

phase of city development, other cities had to integrate technology by making necessary 

modifications to the existing infrastructure.  In both cases, successes and failures are documented.  

It is imperative to document such implementations, and communicate with the officials who are 

involved in such efforts to provide necessary information and guidance for adopting such 

technologies and developing sustainable livable cities.       

1.2 PROJECT OBJECTIVE AND SCOPE 

1.2.1 Objective 

The objective is to synthesize infrastructure and technology for improving access to non-

motorized traffic and mobility within cities while enhancing sustainability.  

1.2.2 Scope 

Improving access to sustainable mobility choices is a key aspect of developing livable 

cities.  As shown in Figure 1-1, this project scope is limited to identifying methods and 

infrastructure to promote walking and cycling.  With regards to promoting cycling in cities, bike-

share program development and use of location-allocation models as planning tools are presented.  

In many cities with adverse weather conditions, underground and above ground pedestrian systems 

are provided to encourage walking and cycling.  Hence, these two infrastructure options are 

explored during this study.  Providing energy efficient lighting systems to make pedestrians and 

cyclists feel safe to travel within cities is paramount to improve mobility.  This report provides 

information on energy efficient lighting systems, cost of implementation, and planning tools.  In 

winter cities, providing snow and ice free streets and walkways promote walking and cycling.  

Technologies used for such endeavors and implementation case studies are presented in this report.  

Electricity needed to operate kiosks at bike-share stations, pedestrian lighting, and snow melting 

systems can be generated through renewable sources.  Solar and wind energy are two such 

resources discussed in this report.  However, effective implementation of solar and wind powered 

systems require identifying the optimal locations for such technologies within the city 

environment.  Hence, this report presents a few tools that can be used for planning purposes.  
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Figure 1-1 is a graphical representation of the overall project scope.  The figure shows the role of 

energy sources, infrastructure, and technology in promoting livability and sustainability. 

 

Figure 1-1.  Scope of the project 

1.2.3 Project Tasks 

In order to accomplish the objective, the project is organized around the following tasks:  

Task 1: Review the state-of-the-art and practice 

The infrastructure and technology implemented in cities that are listed by various agencies 

as green, walk-friendly, bicycle-friendly, etc., are reviewed.  In addition, available funding 

sources, technical support, and other resources are reviewed and documented. 

Task 2: Survey planners, engineers, and other identified key groups and individuals  

City planners, city managers, engineers, and other relevant groups are contacted to gain 

access to available resources such as the existing infrastructure details, maps, development 

plans, specifications, cost, and funding resources and mechanisms.  The responses is used 

to document implementation challenges and lessons learned.   

Task 3: Synthesis of Infrastructure and Technology for Sustainable Livable Cities 

Based on task 1 and 2 outcome, needs and current trends, implementation case studies, 

successes and lessons learned are synthesized and documented.  
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1.3 REPORT ORGANIZATION 

The report is organized into 7 chapters: 

 Chapter 1 presents an overview, objectives, and scope of the project. 

 Chapter 2 presents the key aspects in planning, implementation, maintenance, and 

evaluation of a bike-share program.  This chapter also presents technology and 

infrastructure needed to develop a successful program.  A summary of lessons learned from 

already implemented programs is presented.  Also, a summary of an implementation case 

study that is developed for the city of Kalamazoo in Michigan and presented in appendix B.   

 Chapter 3 presents an overview of underground pedestrian systems (UPSs), motivation 

factors or demands for an implementation, a review of existing UPSs, and a summary of 

lessons learned from already implemented systems. 

 Chapter 4 presents an overview of aboveground pedestrian systems (APSs), motivation 

factors or demands for an implementation, a review of existing APSs, and a summary of 

lessons learned from already implemented systems. 

 Chapter 5 presents an overview of technology for improving sustainability and resilience of 

small cities.  This includes pedestrian lighting, snow melting systems, and planning tools 

for identifying optimal locations for implementing solar panels and wind turbines.   

 Chapter 6 includes a summary, conclusions, and recommendations. 

  Chapter 7 includes the citation list. 

The report appendices include the following: 

 Appendix A: Abbreviations 

 Appendix B: Case Study: Bike-share station locations for the city of Kalamazoo. 
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2 BIKE-SHARE SYSTEMS 

2.1 OVERVIEW 

Environmental impact due to use of fossil fuels and health impact due to lack of physical 

activities and pollution demand implementing less costly and more environmentally friendly 

transportation modes.  Hence, research and implementation of greener alternatives are the focus 

of many countries and cities worldwide.  The explorations and implementations are primarily 

initiated by city officials and planning committees who are seeking alternatives to make their cities 

greener and more resilient.  One such effort is to improve mobility within cities by enhancing non-

motorized facilities, integrating various transportation modes, and implementing other alternatives 

such as ride-share, bicycle-share, etc.  The information presented in this chapter is limited to bike-

share.  

Recently, the use of bicycles has drastically increased within cities (Firestine 2016).  The 

underlying reason is the typical short trips that are taken by city residents.  Bicycles offer the users 

with a chance to complete their first/last mile trips and modify the trips to meet their individual 

needs.  The advantages brought to city residents and employees are not limited to transit stops and 

schedules.  Additionally, cycling offers health, financial, and environmental benefits.  Thus, many 

cities started expanding non-motorized facilities, promoting bicycle use within their jurisdictions, 

and developing bike-share programs. 

A bike-share program makes bikes available at stations throughout a well-defined project 

area for shared use to individuals on a short-term basis.  This provides another choice of 

transportation and extends the existing transportation system by providing access to destinations 

off of existing public transportation routes.  Based on the Bureau of Transportation Statistics 

(BTS), as of August 2015, a total of 46 bike-share systems are being operated by one or more cities 

with a total of 2,655 bike-share stations in total of 65 U.S. cities (Firestine 2016).   

This chapter presents the key aspects in planning, implementation, maintenance, and 

evaluation of a bike-share program.  Use of location allocation models as a planning tool to identify 

the optimum number of bike-share stations for a given jurisdiction is discussed.  Further, 

technology and infrastructure needed to develop a successful program are presented.  A summary 

of lessons learned from already implemented programs is presented.  Also, a summary of an 

implementation case study developed for the city of Kalamazoo in Michigan is presented.  
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2.2 PLANNING 

Prior to launching a bike-share program, up-front planning and consideration must be 

made.  Even though planning methods are not the same among all cities and communities, at least 

the following steps need to be considered when conducting feasibility studies: 

 Define a goal (such as promoting physical activities, reducing traffic jams, providing 

access to underserved communities, etc.)  Defining a goal is important to successfully 

perform a feasibility study, and to evaluate the impact and success of a program once 

implemented. 

 Define initial service area by using heat maps. 

a. Identify dense areas such as areas with high population, job rates, commercial/ 

retail activity, and pedestrian activities; and the areas that are located at close 

proximities to colleges or universities, touristic attractions, recreational facilities, 

and hospitals.  

b. Identify number of short trips within and between these dense areas. 

c. Identify available bicycle infrastructure (bike lanes, shared-use paths, etc.) 

d. Identify social equity such as low income housing, percent living in poverty, and 

percent of non-English speakers.  

e. Identify areas with slope no greater than 4% 

 Evaluate possibility of transit intermodality 

a. Identify connectivity with other modes of transport. 

 Evaluate appropriateness of a bike share system for a jurisdiction.  Surveying residents of 

communities is key to learning the interests, needs, and acceptance of such a program.  In 

addition, the following information can be collected through a survey: 

a) Willingness to pay for the service  

b) Typical mode of transportation  

c) The level of knowledge about bike share systems 

d) Origin and destination of typical trips, time of day, and day of week 

e) Age of trip makers 

f) Purpose of the trips 

 Define the most appropriate operation model and funding mechanism 
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a) Jurisdiction owned and managed 

b) Non-profit  

c) For profit 

 Define possible locations for stations: on-street, sidewalk and/or off-street. 

 Select suitable equipment and bicycles. 

 Estimate associated costs such as capital cost, launching cost, operational cost, and 

administrative cost. 

 Develop marketing strategies, and 

 Develop strategies to prevent theft and vandalism. 

2.2.1 Stakeholder Involvement 

The implementation of a bike-share program is likely to involve a variety of stakeholders.  

Involving them early in the process helps building support and defining goals.  The likely 

stakeholders and their potential roles are listed below: 

 Politicians: provide required resources, enact regulatory changes (if needed), and ensure 

cooperation between municipalities. 

 Planners: ensure integration of the system with bicycle infrastructure and ensure 

integration of the bike-share system with public facilities. 

 Transportation authority: ensure integration of bicycle infrastructure with public transit 

infrastructure and promote the use of bicycles to current transit users. 

 Parking authority: provide space for bicycle stations. 

 Traffic and roads department: coordinate construction of the stations, make change to 

road infrastructure, and install signage and signaling to support increased bicycle traffic 

volume. 

 Police: maintain a safe environment for infrastructure, bicycles, and cyclists; and protect 

the system components from theft and vandalism. 

 Community groups and NGOs: build community support, provide bicycle safety 

education, and promote bicycle use.   

 Business associations: build support among merchants, mitigate opposition to removal of 

parking spaces, and find sponsors. 
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2.2.2 Service Area Selection 

Bike-share service areas are typically located in dense areas (i.e., densely populated areas 

in terms of employment, commercial/retail activity, and pedestrian activities).  Service areas are 

also located at close proximity to colleges, universities, and hospitals.  Other factors that influence 

the selection of a service area include availability of bicycle infrastructure (bike lanes, shared-use 

paths, etc.), touristic attractions, recreation facilities, access to other transportation modes, number 

of short trips that are made by people within a specific service area, and topography.  Developing 

a successful program requires selection of an area that attracts a large number of users and sponsors 

(FHWA 2012; Alta 2013). 

Dense areas are often identified by using heat maps that divide the area to be analyzed into 

approximate square grids of 1,000 ft2, and locate the spots where a majority of the population live, 

work, shop, play and take some form of a transit.  Social equity is also located using heat maps. 

These locations are determined by spatial analysis that identifies the areas with low income 

housing and percentage of population living under the poverty line.  The percentage of non-English 

speaking population is often considered when planning a bike-share program (Alta 2013).  After 

identifying these dense areas, it is also recommended to conduct a survey.  Surveys can help to 

determine public interests, expected support, and willingness to pay for the service.  This 

information is critical and can help in selecting the most suitable service area.  Other helpful 

information obtained from a survey includes the mode of transportation used and the level of 

knowledge about a bike-share program (DeMaio and Sebastian 2009).  Further, surveys can be 

used to educate communities about the benefits of bike sharing. 

Surveys can be used to collect information about the trips taken by a population of a 

community on a daily basis.  These are called mobility studies.  The type of data that can be 

collected are the purpose, origin, and destination of the trips; time of day and day of a week; the 

mode of transportation chosen; and the age of trip makers (Bhat and Koppelman 1999).   

Conducting a survey with a random representative sample of the population, and a population as 

larger as the budget allows, is recommended.  The area of a survey should be extended beyond the 

dense areas, where bike sharing is most likely to be implemented.  This approach helps identifying 

the potential users that live outside of the dense areas but travel to the area for various reasons such 

as work or study (DeMaio and Sebastian 2009). 
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2.2.2.1 Station Locations 

There are three commonly used places to locate bike sharing stations (Alta 2013): 

 On-street: The use of existing no standing/no parking areas are recommended for on-street 

stations.  The consultation with the applicable authority is required to get approval.  One 

vehicle parking space can park up to 8 bicycles.  Safety and user’s comfort need to be 

considered when selecting on-street stations.  On-street locations are primarily considered 

for areas with narrow sidewalks (Figure 2-1) (Wine 2012). 

 

Figure 2-1.  On-street bike share system (Source: Transitized 2015) 

 Sidewalk: A minimum sidewalk width of 10 ft is required to accommodate a station and 

meet ADA requirements.  However, most cities often require maintaining at least 15 ft 

wide sidewalks to accommodate the space required for a station, ADA requirements, and 

the volume of pedestrian traffic (Figure 2-2). 
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Figure 2-2.  Sidewalk bike share system (Source: Thevillager 2014) 

 

 Off-street: Stations can be located in publically owned or private sites.  Public sites may 

include plazas, transit stations, or parks.  These location may have less competition for 

space but requires more consultation with appropriate authorities.  On the other hand, 

private sites may be more difficult to obtain and will require to have a buy-in from the 

owners. 

2.2.3 Station Density 

Bike-share stations are typically located at approximately quarter (¼ ) to half (½ ) miles 

away from each other.  This range is based on the distance that a person is often willing to walk to 

reach a station.  They should also be located where the trips will most likely be taken by young 

adults (between 18 to 35 years old) and places with transit nodes, educational institutions, and 

major public facilities (DeMaio and Sebastian 2009).  However, this distance will be dictated by 

available funding, and permitting and spacing requirements (FHWA 2012, Alta 2013). 

A bike share system with a minimum of 10 stations is typically recommended to provide 

an effective mix of trip origins and destinations, and justification of operational costs.  However, 

a system with a minimum of 20 stations is desired (Alta 2013).  Another factor that affect the 

distance between stations is the density of the area.  As an example, in much denser areas, the 
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distance between stations is maintained at 1,000 ft to 1,300 ft range (i.e., 25 - 36 stations per square 

mile) (Alta 2013).  

The number of bicycles at each station is a function of the demand.  Number of bicycles 

per station need to be determined to ensure availability at any given time.  It is also important to 

ensure availability of empty docks at any given time for bikes to be returned.  A dock-to-bike ratio 

of 1.5 to 2.0 has been commonly used (Alta 2013).  

Once the approximate distribution of stations is determined, following factors need to be 

considered to more precisely locate the stations (DeMaio and Sebastian 2009): 

 Locations with high visibility (e.g., closer to a street intersection) 

 Locations with high accessibility  

 Locations that do not interfere with other users (e.g., pedestrians) 

 

Figure 2-3.  Off-street bike share system (Source: WNYC 2013) 

After identifying potential station locations, getting feedback from public and future users 

is highly recommended.  As an example, Alta (2013) used a web-based tool to gather information 

from the public on potential locations.  The tool allowed the users to suggest alternative locations 

and provide comments. 
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2.2.4 Business Model Selection 

Table 2-1 presents bike share business models, operator, operation procedures, revenue sources, benefits, and potential short-comings. 

Table 2-1.  Bike-share Business Model, Operator, Operation Procedure, Revenue Sources, Benefits, and Potential Short-coming 

Business 

Model 
Operator Operation procedures  Revenue Sources Benefits Potential shortcomings 

Ju
ri
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o

n
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w
n

ed
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n
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 m
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ag
ed

 

A
n

 i
n

d
ep

en
d

en
t 

co
n

tr
ac

to
r 

 Services are provided under the 

supervision of the local authority. 

 Net revenues are shared by 

jurisdiction and the contractor.  

Jurisdiction reinvests the revenue into 

the program. 

 Capital funding is provided by the 

jurisdiction.  Equipment and 

infrastructure is owned by the 

jurisdiction. 

 To maximize revenues, contractors 

are allowed to use advertising and 

sponsorship. 

 Jurisdiction is responsible for 

financing the program.  Contractor 

bears the liability. 

 Federal, State, and local 

grants 

 Advertising and 

sponsorship (title sponsor, 

local businesses, Ads on 

bike share equipment and 

communication, etc.) 

 Membership and usage 

fees 

 Better control over 

permitting and 

deployment of stations. 

 Reinvestment of revenues 

is controlled. 

 Uses private expertise to 

compliment agency skills. 

 Funding resources may 

require more time. 

 Financially liable. 

 Sometimes, ads on 

public space is not 

permitted.  

 Contract negotiation 

skills are required. 
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Table 2-2: Bike-share Business Model, Operator, Operation Procedure, Revenue Sources, Benefits, and Potential Short-coming (contd.) 

Business 

Model 
Operator Operation procedures  Revenue Sources Benefits Potential shortcomings 

N
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t 
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N
o
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at
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 With the support of a jurisdiction, an 

entity is created to provide services. 

 Initial capital is provided by the 

jurisdiction.  Securing additional 

funding is a responsibility of the 

nonprofit organization. 

 Operational costs are primarily 

provided by the nonprofit 

organization. 

 Federal, State and local 

grants 

 Bank loans   

 Local business 

sponsorship  

 Membership and usage 

fees.  

 Financial responsibility of 

a jurisdiction is marginal 

 Reinvestment of revenues 

is controlled. 

 Revenues are reinvested to 

improve the system 

 Public interests are better 

served rather than interest 

of advertisers. 

 Deployment and 

expansion of a 

program can be 

slower. 

 Limited supervision 

by a jurisdiction.  

 Often lack the 

necessary expertise for 

start-up and operation. 

P
ro

fi
t 

b
u

si
n

es
s 

In
d

ep
en

d
en

t 
co

n
tr

ac
to

r  Minimal supervision by a jurisdiction.  

 Jurisdiction has no financial 

responsibility.  

 Public space and permitting costs are 

paid to the jurisdiction as a percentage 

of the revenue. 

 Private investment  

 Local investment 

sponsorship 

 Ads on bikes and stations 

 Membership and usage 

fees 

 Implementation and 

expansion can be quicker 

 More flexibility to 

changes  

 Minimal supervision 

by a jurisdiction 

 Contract negotiation 

skills are required 

 Future expansions are 

likely in profitable 

areas 

Sources: Alta (2013); DeMaio and Sebastian (2009); Shaheen et al. (2010); FHWA (2012) 

.
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2.2.5 Funding Sources 

Table 2-2 presents funding sources based on the business model for capital and launch, operation, and maintenance.  In 

addition, the table presents a few comments and considerations. 

Table 2-2.  Funding Sources: Business Model, Capital and Launch, Operation and Maintenance, and Comments and Considerations (FHWA 2012) 

Business Model Capital and Launch Operation and Maintenance Comments and Considerations 

Jurisdiction 

owned and 

managed 

 Federal grants  

 State/Local grants  

 Sponsorships  

 Membership and usage fees  

 Sponsorships 

 Advertisements 

 Federal grants may provide long-term dedicated funding.  

However, the funding agencies will impose stricter 

timeframes for implementation.  Delays are common. 

 Federal grants can only be used for capital expenses. 

 When sponsorships are considered, the local ordinance 

should be consulted to determine if advertising is allowed 

in public right of way. 

 When FHWA funds are used, outdoor advertising may be 

restricted. 

Non-profit  

 Private foundation grants 

 Local/national energy 

conservation and/or health 

grants  

 Sponsorship 

 Gifts  

 Sponsorship 

 Membership and usage fees  

 Advertisements 

For profit  
 Private funding  Membership and usage fees 

 Advertisements 

 

The available funding sources for developing bike share systems are as follows: 

 Transportation Investment Generating Economic Recovery (USDOT – TIGER Discretionary Grants 2016 ) 

 Congestion Mitigation and Air Quality Improvement (USDOT – CMAQ 2016) 

 Transportation Enhancement Activities (USDOT – TEA 2016 ) 

 Department of Energy (DOE 2016)  

 Transportation, Community and System Preservation Program (TCSP 2015)  

 Centers for Disease Control (CDC 2016)  

 Department of Health and Human Services (HHS 2016) 
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Some state and local grant opportunities may include: 

 Public health grants (FHWA 2012) 

 Local transportation funds (FHWA 2012) 

Sponsorship or advertising models may include: 

 Advertising on street furniture (Alta 2013) 

 Sponsorship that involves long-term relationship where stickers, logos and/or statements 

are put on bike-share infrastructure (bikes, stations, and/or website) (Alta 2013). 

2.2.6 Permitting Process 

An approval or permission from the public and/or private right-of-way owners is 

mandatory to locate bike-share stations.  This process will often require approval of station plans 

and preparation of necessary permits.  The preparation and approval process can take several 

months.  The steps to be taken are (Alta 2013): 

 The station locations, design specifications, and drawings are submitted to the 

corresponding jurisdiction (i.e. Department of Public Works Traffic Engineer).  

 Plans are reviewed and approved. 

 Permits are issued. 

2.2.7 Bicycle Infrastructure 

In the U.S., bicycles are allowed on any street, except freeways and highways.  However, 

when planning to locate bike-share stations, it is prudent to consider bicycle-friendly, safe, and 

interconnected routes to limit bicycle trips to short distances.  Avoiding lengthy and circuitous 

bicycle routes is recommended (Shaheen et al. 2010).  Implementation in communities with 

already existing bicycle infrastructure is highly recommended.  If the community does not have 

bicycle infrastructure (shared-lanes, shared-use paths, paved shoulders, bike lanes or trails), 

implementation is not recommended unless the roads are in good condition with adequate width 

for vehicles to safely pass the cyclists.   

2.2.8 Operational Hours and Seasonal Constraints 

Operational hours depend on user’s travel routines and demand patterns as well as 

availability of funding.  Operational hours include bike service hours and customer service hours.  
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Typically, non-profits tend to offer service hours from 5 a.m. to midnight and customer service 

from 8 a.m. to 5 p.m.  Operational hours are consistent throughout the week.  For profits tend to 

offer 24-hour service, with customer service from 8 a.m. to 6 p.m.  Jurisdiction owned systems 

also typically offer 24-hour operation (FHWA 2012).  Seasonal operation is implemented in winter 

cities.  Typically, the operation is closed during the coldest months.  This results in a decrease of 

operational and maintenance costs (FHWA 2012). 

2.2.9 Cost of Implementation 

The program implementation costs include: 

 Capital cost includes the cost of stations, kiosks, bikes, and docks (Alta 2013).  Station cost 

depends on the size (number of bikes per station).  Cost of bicycles depends on the features 

of the bicycles (e.g., availability of gearing systems, independent docks, GPS).  The cost can 

vary between vendors, but typically a station cost ranges from $40,000 to $55,000 (Alta 

2013).   

 Launching costs include hiring employees, storage spaces, bike and station assembly tools, 

website development, IT setup, marketing, site planning and permitting, bike station 

assembly, and installation docks (Alta 2013). For example, the launching cost for a system 

with 35 stations, 350 bikes, and 595 docks is approximately $500,000.  

 Operational costs include customer service staff salary and benefits, station maintenance 

(troubleshooting, station cleaning, and snow, litter, and graffiti removal), bike maintenance, 

bike redistribution, and other expenses (maintaining facility, purchasing tools and spare 

parts, maintaining IT infrastructure, and maintaining an insurance).  These costs depend on 

numerous factors, but mostly depend on the Service Level Agreement that establishes the 

operating terms to be met (i.e. how long a station can stay empty, how often bikes are 

inspected, snow removal policy, etc.)  Based on the terms, cost could range from $2,400 to 

$2,700 per bike per year.  Rate of theft and vandalism also affect the operating cost (Alta 

2013).    

 Administrative cost includes costs associated with administering a program (program 

manager salaries and benefits; and public outreach) (Alta 2013). 
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2.2.10 Program Marketing 

The success of a program depends on how well the communities are encouraged to use and 

promote a bike-share system.  Marketing campaigns have geared their promotion towards 18 to 35 

year olds, as this demographic is most likely to use the system.  During marketing, it is highly 

recommended to highlight the health and environmental benefits of using bicycles in general 

(DeMaio and Sebastian 2009).  If a program is marketed during the initial planning stage, more 

acceptance and support is often seen after launching.  Early marketing creates an initial excitement 

and brings attention to the program.  Reaching out to local elected leaders for social rides should 

be considered to encourage, support, and promote the initiative.  During the grand opening, getting 

the maximum media coverage is recommended to attract the maximum number of potential users.  

All of these activities will help in building interest and increasing membership (FHWA 2012).  

Use of highly recognizable and unique brands develops a local identity.   

As an example, the city of Montreal conducted a major promotion in fall 2008, before 

launching the program in spring 2009 (DeMaio and Sebastian 2009).  The activities included: 

 Naming contest: A public contest was conducted through the city of Montreal’s website 

and asked residents to propose a name for the program.  The winner was given a lifetime 

subscription to the program. 

 Demonstration: Over the course of a month, a demonstration was held in a station and 

several prototypes were displayed to educate the public.  Also, participants were allowed 

to take test rides. 

 Founding member campaign: In order to obtain early subscriptions, the public was 

encouraged to become “founding members”. The first 2000 people to obtain an annual 

subscription received prizes such as limited electronic keys for unlocking the bicycles, 

tickets to a museum exhibition on bicycles, and other exclusive privileges. 

Other means to drive early subscription are to offer pre-sales of discounted long-term 

subscriptions; offer discounted or free subscription to transit pass holders; and develop 

collaborative programs with local institutions and business in the form of employer-based health 

and wellness programs, tourism related, etc., (DeMaio and Sebastian 2009). 
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2.2.11 User Fee 

User fees account for a large percent of operational revenue.  The fee structure should be 

designed to make short one-way trips more affordable while avoiding an all-day use.  This is 

achieved by offering a lower price for short trips while increasing the price as the rental duration 

increases beyond a predefined time period.  This fee structure encourages users to utilize the 

system as part of the transit trips, and allows the availability of bicycles to everyday users (Wine 

2012).  

User fees include membership and usage fees.  The membership can be issued for a day, 

week, month, or a year.  The usage fee depends on the total duration of a trip.  The membership 

and usage fee ranges are presented in Table 2-3 (FHWA 2012, Wine 2012).  

Table 2-3.  Membership and Usage Fee 

Membership fee Usage fee 

Daily $8 - $5 0 – 30 minutes Free 

Weekly   $30 - $15  30 – 60 minutes $1 - $2 

Monthly $60 - $15 60 – 90 minutes  $2 - $4 

Annual $85 - $40 Additional 30 min. $4 - $6  

2.2.12 Additional Considerations 

2.2.12.1  Weather 

Severe weather conditions (snow, precipitation, etc.) affect the quality of service (FHWA 

2012).  The heaviest precipitation occurs from May through August.  The heaviest snowfall occurs 

from November through March.  As roads and sidewalks are not often cleaned quickly, 

communities with the least bike share experience are greatly affected (Kenney 2012).  In winter 

cities the system is operated until November and then redeployed in March or April (Alta 2013, 

DeMaio and Sebastian 2009).  

2.2.12.2  Topography 

An area with no more than 4% grade along bicycle routes is ideal for implementation of 

bike-share systems.  Users dislike grades more than 4%, and completely evade routes with a grade 

greater than 8%.  Therefore, topography is a critical parameter that needs to be considered during 

the planning stage.  In cities where the grade is greater than 8% empty stations have been found 

on top of the hills and overflowed stations at the bottom of the hills.  Users are willing to ride down 
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the hill, but refuse to bike up.  A commonly used solution is to place a large number of bikes at 

the top of the hill and implement a redistribution system to bring bikes up the slope.  Another more 

costly solution is to use electric bicycles (DeMaio and Sebastian 2009).  Such systems have been 

introduced on a trial basis in European countries such as Italy, Croatia, Sweden, Spain, and 

Denmark (Intelligent Energy Europe Programme of the European Union 2015); and in the U.S. 

(the city of San Francisco, the University of Tennessee, Knoxville, and the University of 

California, Berkeley).  However, the cost is not favorable for developing large programs (Midgley 

2011). 

2.2.12.3  Potential for Transit Intermodality 

Bike-share systems are designed for short trips.  Metropolitan transit systems are designed 

for longer trips and are limited to specific routes.  By combining these two systems, it is possible 

to provide seamless travel between destinations.  Also, this helps attract more users to a bike-share 

system.  Further, by offering financial incentives for those who uses both transit and bike-share as 

a combined service, more users can be attracted to such programs. There are several examples of 

public systems that have implemented transit intermodality.  In German cities such as Berlin, 

Frankfurt, Munich and Hamburg, the national rail company that operates most of urban commuter 

rail services has a program called Call-a-Bike.  Bicycles are located at rail stations and the rail 

users are offered discounted prices for using bicycles.  In the Netherlands, a service is explicitly 

designed for train commuters to use bicycle with a flat rate per 20-hour block (DeMaio and 

Sebastian 2009). 

2.2.12.4 Accessibility by Minority and Low Income Communities 

A bike-share system provides the choice of low cost transportation to communities.  Low 

income and minority communities have the lowest automobile ownership rates and highest 

dependency on public transit (FHWA 2012).  Requirements for bike-share system participation 

can be a barrier in some low income and minority communities.  Certain measures taken to 

overcome these barrier are as follows (Alta 2013): 

 Locate stations where the revenue projections may not be as profitable as others. 

 Facilitate the use of phones for obtaining memberships to encourage individuals who do 

not have access to computers. 

 Provide information and services in multiple languages. 
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 Accept debit cards.  Develop partnerships with local financial institutions and banks to 

assist new users in opening checking accounts and obtaining debit cards. 

 Subsidize memberships by securing sponsorships from various institutions and 

businesses.  As an example, coupons with sponsors’ advertisements can be printed and 

distributed to low income residents.  Another option is to partner with employers of low-

income individuals to encourage participation through a corporate membership.   

 Offer introductory rates.  

 Provide learn-to-ride classes. 

2.2.12.5 Timing 

When scheduling a program launching date, adequate consideration needs to be given for 

the type of equipment and stations selected to avoid delays.  Time to procure and install stations, 

and procure bicycles depends on the type and number of bicycles and stations.  For example, the 

construction related to fixed-permanent stations can take several months.  In contrast, locating 

portable stations may take only a few days (DeMaio and Sebastian 2009). 

2.3 MAINTENANCE 

2.3.1 Bicycle Redistribution 

Bicycle redistribution plays a major role in making a successful bike-share program.  Users 

expect to have open racks to return the bikes and have access to bikes when needed.  Full stations 

with no available docks to return bikes are commonly found in the areas with the highest 

concentration of jobs, housing, and activity centers.  When the topography varies and the grade is 

greater than 4%, bike rides are primarily generated in the downhill direction.  Hence, the frequency 

of bicycle redistribution need to be determined based on users’ travel patterns within a jurisdiction.  

Once a bike share-system is implemented, additional studies need to be conducted to evaluate the 

program performance and fine-tune the operational parameters (FHWA 2012).  

Redistribution requirements are included in the program’s contract to mitigate 

inconvenience to the users.  For example, the contract executed with Capital Bikeshare systems in 

Washington D.C. requires that stations cannot have all empty docks or all full docks for more than 

three hours between 6 a.m. and 12 a.m.; and for more than 6 hours between 12:01 a.m. and 5:59 

a.m. during any day (Section 3-E 2012).  Redistribution methods include trucks/vans carrying 
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bicycles from one station to another, bike-powered trailers, and recompensing bike sharing system 

users who manually help to redistribute bicycles (Figure 2-4).  The trucks/vans method is used in 

large bike-share programs, and it is the most expensive mode of redistribution.  Irrespective of the 

method of redistribution, traffic jams during peak hours can affect redistribution (FHWA 2012).  

 
(a) Redistributing van 

 
(b) Bike-powered trailer 

Figure 2-4.  Methods of bikes redistribution (FHWA 2012)  

When planning a bike-share program, it is difficult to accurately estimate the cost of bike 

redistribution.  In order to estimate the cost, an understanding of station density (or proximity to 

each other) and travel patterns are needed (FHWA 2012).  

2.3.2 Operational Service Levels and Maintenance 

Bike maintenance, removing graffiti on stations, and bike redistribution are part of the 

services required to develop a successful bike-share program.  Level of service provided by a 

specific program depends on the availability of funding as operational costs.  For example, the cost 

of checking bikes every day to provide a high level of service is more expensive than checking the 

bikes in every month. If operational costs are covered by using program profits, the level of service 

is affected by the amount of profit generated.  When the profit is less than anticipated, certain 

services can be postponed to offset the expenses; yet, it will impact the quality of service provided 

by the program.  If operational costs are funded by other means, quality of service is not affected 

by the profit generated by the program (Alta 2013).  

The costs of preventive maintenance can be reduced by allowing users to report bicycles 

needing repairs at the kiosk with a user interface.  It is paramount to maintain an inventory with a 

detailed and updated repair history for each bicycle.  A bike maintenance checklist needs to be 

developed and used during regular inspections.  In order to minimize the cost of maintenance by 
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eliminating potential duplications, it is important to double check the maintenance checklist at the 

time of distributing bicycles to different stations. 

2.3.3 Prevention of Theft and Vandalism 

Reported cases of theft and vandalism are not very common in the United States.  Most of 

the existing bike-share systems have taken measures to prevent theft.  These measures include the 

use of high tech locking mechanisms, integrated GPS transmitters, and the use of specialized 

shape, size and branding bicycles with unique parts.  Besides, some bike-share equipment suppliers 

provided built-in cable locks on bikes to allow the users to lock the bike when needed during their 

trip without getting into a docking station (FHWA 2012). 

2.4 PROGRAM EVALUATION  

Evaluation of program needs, effectiveness, and the impacts on the users is a critical step 

in developing a sustainable program.  During the program planning stage, potential for developing 

a sustainable program needs to be evaluated.  After a program is launched, user’s feedback, data 

collected at Kiosks, data from bike mounted technology such as Global Positioning Systems (GPS) 

units, or a combination thereof can be used for performance evaluation.  Community-based surveys 

are very useful in evaluating user perspective.   

2.4.1 Program Sustainability  

The success of a bike-share program depends on its ability to economically self-maintain 

operational and administrative costs.  Due to limited resources and funding available for public 

transportation, developing self-sustaining programs are not supported (FHWA 2012).  The 

potential revenue sources are user fees, membership fees, grant funding, private foundation 

contributions and donations, and advertising and/or sponsorships (Alta 2013).  It must be kept in 

mind that bike-share programs typically take a number of years to “mature” and self-sustain.  The 

time it takes to be self-sufficient varies from program to program (Alta 2013).  

2.4.2 Program Follow-up 

Once a program is launched, user’s satisfaction is evaluated aside from monitoring bicycle 

usage.  The first evaluation needs to be performed a year after launching a program.  Primarily, 
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surveys are used for obtaining user feedback.  Users can be asked to rate the overall satisfaction 

based on the accessibility to the community destinations, quality of bicycles, bike-route safety, 

mobility with bike-route slope, and the suitability of the bike-station location.  In addition, the ease 

of use, available payment methods, cost, availability of bicycles and empty spots at stations, and 

maintenance could be evaluated based on the user’s satisfaction level.  The survey responses are 

instrumental in identifying areas needing improvements and possible expansion of the system.  As 

an example, a year after launching Velib bike-share system in Paris, a survey was conducted with 

the following questions (DeMaio and Sebastian 2009): 

 Did the program allow to make trips that were previously impossible? 

 Did the program complement the current transportation options?  

 Was the program useful at the beginning or end of an intermodal trip? 

 Did the program allow using cars less frequently than normal? 

Instead of using questions that require descriptive feedback from the users, a list of 

questions can be developed to get user feedback as a rating.  A sample questionnaire is shown in 

Table 2-4. 

Table 2-4.  A Sample Follow-up Survey Questionnaire Form 

 Unsatisfied 
Moderately 

unsatisfied 
Satisfied 

Moderately 

satisfied 

Highly 

satisfied 

Access to community destinations by bikes      

Quality of bicycle      

Bike-route safety       

Mobility with bike-route slope      

Bike-station location      

Available payment methods      

Bicycle fare/User fees       

Maintenance of bike-station      

Availability of bicycles at the station for check out      

Availability of empty slots for bicycle return      

2.4.3 Data for Program Performance Evaluation 

Kiosks at bike share stations enable convenient bicycle check-in or check-out.  GPS units 

are mounted on bicycles to collect location and route data.  Data collected from kiosks and GPS 

systems can be used to determine travel patterns and system utilization in order to develop plans 

for program improvement based on user’s perspective.  This data can also help track the 

environmental and health impact to the community by determining the amount of burned calories 

and carbon offset from the miles ridden by users.  Different socio-economic data about the bicycle 
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users could be assessed based on community surveys.  The collected data can also be used to secure 

additional funding to expand the program.  The following is a list of data items that can be used to 

justify an expansion request (FHWA 2012) based on the user’s perspective: 

Kiosk-based Data: 

 Average Travel Time (hour) 

 Average Trip Length (mile) 

 Average Delay (hour) 

 Type of Membership (monthly/annual/life-time) 

 Usage (in peak/off-peak hours) 

 Number of trips per day 

 Total burned calories/trip 

 Carbon offset/trip 

 Battery run-out time (of solar powered stations) 

 Run-out duration of all the bicycles at a station 

GPS-based Data: 

 Number of destinations per trip 

 Frequently visited routes 

Community-based Survey Data: 

 Purpose of typical trips 

 User’s annual income 

 User’s occupation 

Certain programs have made the data available to public.  The general public can track the 

progress, evaluate transparency of a program, and perform necessary analysis to evaluate the 

overall impact and performance of the program (FHWA 2012).  

Jurisdictions need to have access to data in order to evaluate performance and to develop 

plans for program expansion.  User feedback can also be used to measure the effectiveness of 

marketing initiatives by the decision maker’s perspective (FHWA 2012).  Bike-share performance 

can be evaluated in different scales e.g. local jurisdictions, regional planning agency and state wide 

agency from the view of decision maker’s perspective.  Planning scenario evaluation, long-term 
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benchmark, alternatives comparison, and project need with near-term standard are evaluated in 

terms of different scales for bike-share programs.  For example, the local jurisdictions could 

improve the integrated network planning by maintaining long-term or near-term standard for 

current bike-share program by reviewing the user’s feedback.  The local decision makers also 

could take an initiative whether any alternate scenario is needed for current bike-share program in 

respect to network planning, project planning, development review or street design; whereas the 

entire decision would be based on user’s feedback.  Table 2-5 provides a check list for performance 

evaluation by local jurisdictions.  

Regional planning agency scope includes policy development and funding allocation in 

addition to network planning.  For example, funding allocation by regional planning agencies 

could be varied (whether it would be long-term, near-term, or alternatives) based on the user’s 

feedback.  The regional agency could make decisions for allocating necessary funds based on 

current project need or planning scenario evaluation; while the correct decision of fund allocation 

would be solely based on the user’s need for the current bike-share program.  Table 2-6 provides 

a check list for performance evaluation by regional planning agencies. 

State agency work includes code compliance checking while considering all other 

indicators as mentioned above in regional agency for evaluating performance of a bike-share 

program (FHWA 2016).  Table 2-7 provides a check list for performance evaluation by state 

agencies.  Different evaluation criterion also could be established based on different land use e.g. 

urban, suburban, rural, transitional etc., for a bike-share program.   

Table 2-5.  A Check List for Performance Evaluation by Local Jurisdictions 

 Planning Scenario 

Evaluation 

Long-term 

Benchmark 

Alternatives 

Comparison 

Project 

Need 

Near-term 

Standard 

Network planning      

Project planning      

Development Review      

Street design      

Table 2-6.  A Check List for Performance Evaluation by Regional Planning Agencies 

 Planning Scenario 

Evaluation 

Long-term 

Benchmark 

Alternatives 

Comparison 

Project 

Need 

Near-term 

standard 

Network planning      

Regional policy 

development 

     

Funding allocation      
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Table 2-7.  A Check List for Performance Evaluation by State Agencies 

 Planning Scenario 

Evaluation 

Long-term 

Benchmark 

Alternatives 

Comparison 

Project 

Need 

Near-term 

standard 

Statewide network 

planning 

     

Statewide policy 

development 

     

Funding allocation      

Code compliance      

2.5 PLANNING TOOLS - LOCATION-ALLOCATION MODELS 

Location-allocation models are used to identify the optimal location for new facilities such 

as fire stations, schools, hospitals, and bus stations.  In other words, the location-allocation models 

tend to choose optimal locations from a group of candidates and designate demand to the location 

based on the demand distribution.  The demand locations represent the dispersion of people, 

employment, and locations of interest.  Location-allocation models, depending on the objective of 

an application, require defining delimited constraints.  Commonly used constraints include limited 

number of facilities (when budget is limited), predefined methods of travel to the closest facility, 

and predefined impedance cutoff – travel distance or time from demand to a facility or vice versa 

(Zhang et al. 2013).  Location-allocation models designate demand to only one facility; thus, the 

demand at a certain point is not split or shared by different facilities.  Also, any demand that is 

located outside of the predefined impedance cutoff will not be allocated by the models (Algharib 

2011). 

2.5.1 Optimization Models 

Location-allocation models can be programed into a Geographic Information System (GIS) 

to develop a decision-support tool for locating critical facilities (ArcGIS 2016; Yeh and Chow 

1997; Valeo et al. 1998).  ArcGIS software provides a geographic information system tool that is 

used for network-based spatial analysis to solve complex routing problems.  ArcGIS-Network 

Analyst extension tool contains six location-allocation models that can be used to solve various 

problems by (1) minimizing impedance, (2) maximizing coverage, (3) minimizing facilities, (4) 

maximizing attendance, (5) maximizing market share, and (6) targeting market share (ArcGIS 

2016). 

The minimize impedance model is used to identify an optimum location of a facility, such 

as a public-sector facility (a library, a health clinic, etc.), to minimize travel time or travel distance.  
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The location-allocation model that maximizes coverage provided by a facility has been 

implemented to determine the location of ambulances (Eaton and Daskin 1980), fire stations 

(Schilling 1976), and rain gauges (Courtney 1978).  The other model needed for locating facilities 

is the one that minimizes the number of facilities to serve a large population with the least number 

of facilities.  The maximize attendance, maximize market share, and target market share models 

are used for solving competitive facility location problems.  Public-sector facilities do not compete 

with each other, rather they complement each other.  Hence, minimize impedance, maximize 

coverage, and minimize facilities are the three location-allocation models applicable for locating 

public facilities.    

The objective of the study presented in this chapter is to provide a process for developing, 

implementing, and maintaining a bike-share program.  One key aspect of a program is identifying 

the locations of bike-share stations.  This requires defining demand locations, candidate facilities; 

and a distance and/or travel time matrix.  The demand locations considered in this study represent 

the population density, employment, and locations of interest.  The candidate facilities are the 

predefined locations that are determined based on a set of criteria such as the area of influence, 

available non-motorized facilities, possibility of intermodality, topography, and the desired 

walking distance.  The distance and/or travel time matrix contains the distances or travel times 

between demand locations and candidates facilities (Keane and Ward 2002). 

Bike-share stations are located to complement each other.  Hence, maximize coverage and 

minimize facilities models are selected as the optimization models.  Desired walking distance from 

a demand location to a bike-share station is defined as the impedance cutoff.  Integration of 

minimize impedance and maximize coverage models helps identifying optimum bike-share station 

locations to serve a large population while maintaining the desired walking distance.   

2.5.1.1 Maximize Coverage Model 

This model maximizes the number of demand locations served by a facility.  This means 

that the facility located nearest the high demand density has the preference to be chosen (Algharib 

2011).  First, the model allows the user to pre-define a number of facilities within a selected area 

after considering the budgetary constraints.  Then, the optimization is performed to cover the 

greatest demand (Bryant 2013).  The maximize coverage model presented by Church and ReVelle 

(1974) is described below: 



Infrastructure and Technology for Sustainable Livable Cities 

29 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑎𝑖𝑦𝑖

𝑖 ∈𝐼

                                                    (1) 

subject to (s.t.) 

∑ 𝑥𝑗 ≥ 𝑦𝑖                                              (2)      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼

𝑗 ∈ 𝑁𝑖

 

∑ 𝑥𝑗 = 𝑃                                                (3)     

𝑗 ∈ 𝐽

 

where, 

I = set of demand locations, 

J = set of candidate stations, 

P = number of stations to be allocated, 

xj = 1 if station is allocated at j, 0 otherwise, 

yi = 1 if demand is covered at i, 0 otherwise, 

S = standard distance (impedance cutoff), 

dij = distance from demand node to candidate facility, 

Ni = {𝑗 ∈ 𝐽|𝑑𝑖𝑗 ≤ 𝑆}  set of candidates which can cover demand i, 

ai = demand at node i 

Equation (1) maximizes the number of demands covered by a facility.  Equation (2) assures 

that a demand location is covered by at least one facility as long as the demand location is situated 

within the impedance cutoff (S).  Equation (3) calculates the total number of facilities that can be 

located within a pre-defined service area (Algharib 2011). 

Maximize coverage model can be used to locate public-sector facilities such as emergency 

service facilities.  The primary purpose of efficiently locating an emergency facility is to enable 

the public in the area to have the quickest access to the facility in case of an emergency.  The same 

approach can be used when locating bike-share stations and entry/exit points for underground 

pedestrian facilities.  The main limitation of this maximize coverage model is that it does not 

consider demand locations situated outside the impedance cutoff.   

2.5.1.2 Minimize Facilities Model 

Minimize facilities model is used to determine the minimum number of facilities needed 

to serve a targeted demand based on pre-defined facility locations and impedance cutoff (Bryant 
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2013; Current et al. 1985).  In other words, minimize facilities model aims to minimize the number 

of facilities needed to serve the demand located within a defined service distance (Church 1984).  

The difference between maximize coverage and minimize facilities is that minimize facilities 

model does not allow users to specify the number of facilities to be allocated, rather it is determined 

through the mathematical process based on the demand and impedance cutoff.    

Below is the mathematical formulation of the minimize facilities model as presented by 

Toregas et al. (1971): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑗                                                                    (4)

𝑗 ∈ 𝐽

 

s.t. 

∑ 𝑥𝑗 ≥ 1     𝑖 ∈ 𝐼

𝑗 ∈ 𝑁𝑖

                                       (5) 

𝑥𝑗 = {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑠𝑖𝑡𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       𝑗 ∈ 𝐽  

Where, 

𝑁𝑖 = {𝑗|𝑑𝑖𝑗 ≤ 𝑆} demand covered 

S = standard distance (impedance cutoff), 

dij = distance from demand node to candidate facility 

i = set of demand 

j = set of candidate facilities 

Equation (4) minimizes the number of facilities required to serve an area.  As per Equation 

(5) the number of candidates has to be greater than or equal to 1 (Algharib 2011).  One of the 

limitations in the model is that it does not include budget (or the maximum number of facilities) 

as a constraint.  Hence, the number of facilities determined by the model for total coverage may 

be unrealistic when budget is limited (Chung 1986). 

2.5.2 Example: Bike-share Stations for Downtown Kalamazoo 

Downtown Kalamazoo is surrounded by a significant population of students, visitors, 

commuters, and residents making it a suitable place for initiating a bike-share program.  

Population, employment, and locations of interest were considered as the demands (see Appendix 
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B Section B.2 for more details).  A program size and number of bike-share stations are determined 

based on the availability of funds and the goals of the program.  However, having 10 stations is 

considered as the minimum to provide an effective mix of origin and destination trips to make a 

program sustainable (Alta 2012).   

ArcGIS is used as the analysis tool and all the required data was uploaded as layers.  For 

this example, the funds and goals of the program were not defined.  In order to initiate the analysis, 

thirty (30) stations were selected as the candidates after evaluating the distribution of non-

motorized facilities, bus stations/shelters, topography, and the locations of interest.  Figure 2-5 

shows the locations of the candidate stations.  Additional details on selecting candidate station 

locations are presented in Appendix B Section B.3.     

 

Figure 2-5.  Candidate bike stations assigned for preliminary analysis 

Maximize coverage and minimize facilities models were selected as the optimization 

models.  Desired walking distance from a demand location to a bike-share station is defined as the 

impedance cutoff.  The maximize coverage model provided the upper bound and minimize 

facilities provided the lower bound of the bike-share stations for each demand type.  Analysis 

results are presented in Appendix B Table B-1.  In order to select a set of optimal candidates that 

serves each demand type, the station that satisfied two (2) or more demand types was selected as 

optimal for this analysis.  Twelve (12) stations were selected through the above procedure (see 

Appendix B Section B.4.3 for more details).  The main constraint use in the analysis was the 
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desired walking distance.  The final set of optimal bike-share stations for downtown Kalamazoo 

is presented in Figure 2-6.  

 

 

Figure 2-6.  The most suitable locations for bike-share stations in downtown Kalamazoo 

2.6 TECHNOLOGY AND INFRASTRUCTURE 

Developing a bike sharing program seems like an emerging trend; however, it dates back 

to 1965 and has already gone through four generations over the course of the past 50 years 

(DeMario 2009).  The first generation required no credit card or identification resulting in higher 

risk of theft and vandalism.  The second generation required a check-out deposit; however, the 

minimal deposit was not enough to significantly reduce theft.  The third generation introduced the 

use of credit card transaction and radio-frequency identification (RFID) chips to unlock the bikes.  

The user identification and security deposit advanced the program providing accountability against 

theft and vandalism.  Finally, the fourth generation introduced solar powered stations with wireless 
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communication.  The following sections present a brief overview of kiosks and RFID and GPS 

technology; power supply; and electrical bicycles used in bike-share programs.   

2.6.1 Kiosks, RFID, and GPS Technology 

The recovery of bike sharing was related to the initiation of technological advancements 

such as credit card transactions and RFID chips (radio-frequency identification).  These 

advancements allow operators to introduce accountability and reduce theft and vandalism.  The 

credit card transaction are performed by using a kiosk.  The kiosks have a software back-end that 

keeps track of transaction and ridership information.  Thus, credit card transaction at the kiosks 

allows collection of user’s identification and deposit.  

The RFID chip tags are a remote/self-powered asset tracking technology.  Another 

emerging feature is the use of integrated GPS transmitters that allow for the tracking bicycles 

throughout the service area.  In addition to helping in the rare case that a bike is stolen, this 

information can be useful both for planning bike-share system expansion as well as overall bicycle 

network infrastructure improvements (FHWA 2012). 

2.6.2 Solar Powered Stations 

Typically, grid power is used for the stations and requires hardwiring.  Use of grid power 

requires additional infrastructure and deployment time.  Further, it limits the ability flexibility in 

relocating the stations (FHWA 2012; DeMaio 2009).  The most recent development is in a form 

of a modular system with solar power and wireless communication.  The advantage of this modular 

system is that the stations can be moved, relocated, expanded, or reduced to cope with the demand.  

The integrated power management programs turn the system into sleep mode after a pre-defined 

inactive time period until the next user touches the screen to activate the station.  This feature helps 

in saving power for operating the system for an extended period of time (Sherman 2011).  When 

solar energy is inadequate during certain periods, additional rechargeable batteries can be 

integrated (DeMaio 2009).  In winter cities, the solar powered stations can be removed and stored 

during winter months (Austen 2009).   

http://mashable.com/2011/07/13/bike-sharing-cities/#I2_.EytJxiqk
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2.6.3 Other Technologies 

Other improvements include incorporating integrated transportation cards, electric bikes, 

and high-tech bicycle components.  The integrated transportation allows the use of one card to ride 

both bikes and public transportation (Colin 2013).  Electric bikes have been introduced in cities 

such as Knoxville, Tennessee, and San Francisco, California (Colin 2013).  Electric bikes have an 

electric motor that offers several speed setting to assist users to travel in different terrain types.  

Compared to traditional bicycles electric bikes enable the user to travel longer distances and over 

hills with less fatigue and sweat.  Because an electric bike typically costs twice the price of a 

similarly equipped bicycle, the electric bike market has not grown as rapidly in the U.S. when 

compared to other countries (Pro-E-Bike 2015; Dill and Rose 2012; Rose 2012).  Figure 2-7 shows 

components of a typical bicycle.  

 

Figure 2-7.  Fourth generation bicycle components (Source: Inhabitat 2013) 
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2.7 A REVIEW OF TWO RECENT IMPLEMENTATIONS 

This section presents an overview of two bike-share programs implemented in two cities 

in Michigan, USA.  The following sections detail funding sources, implementation requirements, 

power sources for bike-share stations, and program evaluation.  

2.7.1 Bike-Share System in the City of Ann Arbor 

The president of University of Michigan (UofM) was inspired to initiate a bike-share 

program after observing the program in the University of Colorado Boulder.  At the same time, 

there was an interest from the city of Ann Arbor to add a program in the community.  Clean Energy 

Coalition (CEC), a nonprofit organization dedicated to promote clean energy technologies as a 

way to create a healthier environment, was able to bring UofM and city of Ann Arbor together in 

a partnership to start a program called ArborBike (CEC 2016).  CEC is the owner-operator of the 

system.  B-Cycle is the equipment vendor.  The system includes 14 stations.  The majority of the 

stations are located in downtown Ann Arbor where there are areas with high population and 

employment densities, including large concentrations of UofM students.  The program usually 

operates annually from April 1st to November 15th (Stanton 2014).  

The initial capital cost for launching the program was $750,000.  These initial funds were 

secured from two sources - federal and local.  Federal funds amounting to $600,000 were secured 

from the Congestion Mitigation and Air Quality Improvement (CMAQ) program that is jointly 

administered by FHWA and the Federal Transit Administration (FTA).  A local match worth 

$150,000 over the first two years was provided by the city.  The University is the title sponsor and 

committed $200k a year for the first three years with a total of $600,000 to help cover operational 

cost for the first three years.  The program is currently in the third year of that agreement.  

Additional operating costs are covered using ridership and sponsorship revenue.  The current 

sponsors include the title sponsor (UofM) and the community sponsors (Underground Printing - 

UGP, University Musical Society - UMS, KerryTown Market & Shops, Om of Medicine, and the 

Uptown of Downtown).  The program partners are the city of Ann Arbor, The Ride, the University 

of Michigan, and Clean Energy Coalition. 

Based on personal communication with the program supervisor, it was determined that the 

city of Ann Arbor did not have to have a specific mileage on non-motorized facilities in the city 

to get the program started.  Increasing bike infrastructure has always been a constant goal of the 
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city.  Although mileage was often increasing, it was not a requirement for the system.  During the 

first year, the number of memberships, rides, and sponsorships, along with just feedback on how 

well people liked the program were considered as the measure of success.  Currently, the city of 

Ann Arbor is evaluating success based on ridership/membership targets.  For example, the current 

goal is an increase of 15% in membership by the end of 2016. 

All the stations are solar powered.  When solar power is insufficient, the batteries in the 

system are replaced with charged batteries.  “During the summer, the sunlight is sufficient and 

hardly ever there is the need to exchange batteries.  However, in the early spring and fall, the 

stations that are not optimally located had been requiring batteries exchange”, expressed the 

system manager, Heather Croteau, through personal communication.  Figure 2-8 presents one of 

the Ann Arbor bike sharing system stations. 

 

Figure 2-8.  A bike-share station in Ann Arbor, MI (Source: Rupersburg 2014) 

2.7.2 Bike-Share System in the City of Battle Creek 

In 2013, the bike-share program in Battle Creek, MI, started with a single station and has 

added a new station every year since then.  To date, there are 3 operating stations and another will 
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be added during 2016.  The initiative started from the Battle Creek Community Foundation, a 

nonprofit organization, with the purpose of improving personal health and wellness of the 

community.  The system is currently owned and managed by the Battle Creek Community 

Foundation.  The first station was sponsored by the Battle Creek Community Foundation.  The 2nd 

and 3rd stations were sponsored by local institutions such as Calhoun County Visitors Bureau, 

Bronson Battle Creek hospital, and Kellogg Community College.  A few business organizations 

around the town (Arcadia Brewing Co. and Heritage Chevrolet) also contributed.  During the 

implementation process, the sponsor was involved in selecting a location for the bike-share station 

and helping with the permitting process.   

TeamActive, a local bike shop, maintains the bicycles.  TeamActive performs weekly 

routine checks to ensure the bikes are in good condition.  TeamActive also stores the bicycles 

during winter and installs a protective cover over the stations (Lewis 2013). 

There was no mileage requirement from the city of Battle Creek for implementing a bike-

share program.  Since there was no defined grant process, the city of Battle Creek did not have any 

restrictions (Angela Myers, the system manager, though personal communication).  The first 

station was solar powered.  Because of the cost of solar powered stations, grid power was used for 

the rest of the stations to make the cost of installation more affordable to future sponsors.  As per 

the system manager, the kiosks consume very little power and there was no significant cost saving 

by running the system on solar.  A new station can cost about $20,000 including the entire solar 

system for the infrastructure (Bowman 2014).  

The Battle Creek system vendor, Bcycle, provides the city of Battle Creek a back-end 

website to track the usage.  So far, the city has not formally evaluated the performance or success 

of the system.  However, the usage increases with the installation of every new station.  The goal 

of the program is to make it self-sustaining.  Figure 2-9 shows one of the stations in Battle Creek, 

MI. 
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Figure 2-9.  A bike-share station in Battle Creek (Source: Kellogg Community College 2015) 
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2.8 LESSONS LEARNED FROM IMPLEMENTATIONS 

Documenting experience in bike-share planning, implementation, operation, and evaluation is vital to enhance performance 

of the existing systems as well as to make the future implementations more effective.  Six lessons learned topics are addressed: (a) 

theft and vandalism; (b) bicycle redistribution; (c) information systems; (d) prelaunch considerations; (e) station; and (f) system in 

general.  Under each topic, a problem and potential solutions are presented.  Table 2-8 provides a summary of lessons learned from 

the implementations in cities.  Table 2-9 presents a summary of pros, challenges, and recommendation from implementations in 

colleges and/or universities. 

Table 2-8.  Lessons Learned - City Implementations 

Topic Problem Solution 

Theft and vandalism 

(Shaheen et al. 2010) 

(a) Anonymity when checking out 

bicycles created a system susceptible to 

theft.  

(a) Third generation bike-share systems introduced smartcard to checkout 

bikes.  The cards recorded user identification and usage.  Allocate 8% to 9% 

of the budget to address theft. 

Bicycle redistribution 

(Shaheen et al. 2010) 

(a) Bicycle redistribution is a challenge in 

high demand areas. 

(a) Use of natural gas powered vehicles and trucks for bicycle redistribution.  

Implement real-time information on bicycle stations (shortage and 

overcrowding) to increase efficiency and effectiveness in bike redistribution. 

Information systems 

(Shaheen et al. 2010) 

(a) Access to real-time information about 

empty docks and bicycle availability is 

needed. 

(a) Real-time information can be provided through internet, text messages, or 

calling hotlines. 

 

Prelaunch considerations 

(Shaheen el al. 2010) 

(a) System needs to be flexible enough to 

adopt to the change in demand. 

(a) Implement mobile stations to help relocate based on usage patterns.  

Station  

(DeMaio and Sebastian 

2009) 

(a) Station is often empty. 

(b) Station is often full. 

(c) Station is underused. 

(a) Increase redistribution capacity. 

(b) Increase station capacity, add more stations nearby. 

(c) Relocate station to a more visible or busier location. 

System in general 

(DeMaio and Sebastian 

2009) 

(a) System is underused. 

(b) System is not used in combination 

with other transit modes. 

(a) Reduce membership fees, improve bicycle infrastructure, provide 

temporary financial incentives, and increase marketing. 

(b) Advertise on the transit system, provide free or discounted memberships 

to transit holders. 
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Table 2-9.  Lessons Learned - Implementations in Colleges and Universities (Kenney 2012) 

University and Bike 

share system Name 
Pros Challenges Recommendations 

University of Illinois at 

Chicago 

 

B-Cycles 

 Program offered flexibility to pick up 

and return bikes at multiple locations. 

 Kiosks were used to make the service 

available during 24 hours/day and 7 

days/week. 

 High cost incurred for infrastructure and 

purchase of bicycles.  Need for recuperating 

cost by overcharging to users. 

 Program was not successful due to issues with 

paperwork and proper authority. Consequently, 

program was launched at the end of semester 

and did not have much acceptance.  Also, 

weather was severe immediately after 

installation and contributed to low usage. 

 Invest adequate time in planning, 

preparation and marketing. 

University of Chicago 

 

Recycles 

 Uses properly labeled impounded bikes 

from campus to minimize costs 

 Free for students, faculty and staff 

when campus ID is used. 

 Must sign a waiver prior to admission 

 Multiple locations on campus 

 Offers only round trips.  Bicycles must check-

out and return at same location during working 

hours. 

 Hours vary at different times of the year 

 Program is unable to charge late fee to student 

accounts. Only when a student owes $200 or 

more, a hold is put on the account. 

 $34,000 is required annually to hire a 

coordinator in its Office of Sustainability to run 

the program  

 There was not enough budget to add more 

bikes.   

 Hours limited by staffing at each station. 

 Students need to be educated about 

locking the bicycles during member 

sign up process to prevent theft.  

 Parking fees can be used as sources of 

funding. 

 Program needs to be linked to and 

payable through a card system.  

Loyola University  

 

ChainLinks 

 Students manages the program. 

 Flexible terms for duration of rental - 

daily, weekly, monthly, semester 

basis, and academic year basis. 

 Started as student-run organization of 

volunteers and then changed to paid student 

laborers. This resulted in higher operational 

costs  

 Training students to manage the system and 

transferring authority between students were 

challenging. 

 Additional operational cost was needed to store 

bicycles during winter. 

 Staff support/oversight is 

recommended to help with the 

transition between students 

University of Kentucky  

 

Wildcat Wheels 

 

 Two programs: student (students 

operated) and faculty/staff 

(department operated) 

 Used federal grant (CMAQ) 

 Residential hall only have two bicycles 

available for rentals 

 There is no daily rentals.  

 More difficult and costlier to maintain. 

 TIAA-CREF is a potential funding 

source to explore for large-scale bike 

sharing systems. 
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 Bicycles can be rented for various 

durations: weekly, semester-long, and 

residential hall fleets. 

 No membership or usage feeds, but 

requires to sign a waiver. 

 Uses refurbished bikes 

 Bike shop is mainly operated by students 

making it challenging to train and transition 

authority between students. 

University of Illinois at 

Chicago 

 

Illinois Cross-Campus 

Bicycles 

 Free of charge 

 Does not require a waiver 

 Department funded and operated 

 Only available for faculty, staff, and paid 

graduate students of a particular department. 

 Store during winter season 

 Not inspected after each use. Difficult to notice 

problems and fix them, especially overnight. 

 Partnering with local bike shops is 

recommended for maintenance. 

 Small-scale programs are proven to 

be successful.  
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3 UNDERGROUND PEDESTRIAN SYSTEMS 

3.1 OVERVIEW 

Underground pedestrian systems (UPS) are a series of interconnected tunnels used in 

several cities with populations of significant size.  The systems are typically used to avoid 

inclement weather and/or to decrease pedestrian density in urban areas.  This section presents the 

motivating factors identified from literature for using underground pedestrian systems, review of 

two underground systems, and conclusions drawn from the findings. 

3.2 MOTIVATING FACTORS FOR UPS IMPLEMENTATION 

Cui et al. (2010) reviewed underground pedestrian systems in 51 cities.  Table 3-1 lists the 

name of city, country, and population.  In North America, the City of Duluth, Minnesota (MN), 

has the least population with 86,128.  Out of all 51 cities, St. Gallen in Switzerland (CH) has the 

least population of 73,808. 

Table 3-1.  Population of Cities with Underground Pedestrian Systems (Cui et al. 2010) 

North America East Asia Europe 

Duluth MN 86,128 Kawasaki City JPN 1,426,000 St. Gallen CH 73,808 

Albany NY 98,424 Kyoto City JPN 1,474,000 Geneva CH 188,634 

Rochester MN 110,714 Nagoya TWN 2,264,000 Stuttgart DE 597,939 

Richmond VA 214,114 Taipei JPN 2,619,000 Helsinki FI 599,676 

Halifax CN 390,095 Osaka CHN 2,665,000 Athens GR 664,046 

Atlanta GA 447,841 Harbin CHN 3,482,000 Frankfurt DE 687,775 

Vancouver CN 603,500 Nanjing CHN 3,642,000 Amsterdam NL 779,808 

Oklahoma City OK 610,613 Hong Kong CHN 7,188,000 Munich DE 1,388,000 

Seattle WA 652,405 Beijing CHN 11,510,000 Barcelona ES 1,602,000 

Washington D.C. DC 658,893 Tokyo JPN 13,350,000 Hamburg DE 1,734,000 

Winnipeg CN 663,615 Shanghai CHN 14,350,000 Paris FR 2,244,000 

Edmonton CN 812,200 Other Kiev UA 2,804,000 

Dallas TX 1,258,000 Buenos Aires AR 2,965,000 Berlin DE 3,502,000 

Philadelphia PA 1,553,000 Sydney AU 4,293,000 London GB 8,539,000 

Montreal CN 1,650,000 Santiago CL 5,218,000 Moscow RU 11,920,000 

Houston TX 2,196,000 Singapore SG 5,399,000    

Toronto CN 2,615,000 Bangkok TH 6,355,000    

Chicago IL 2,719,000       

New York NY 8,406,000       

Mexico City MX 8,851,000       
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The definition of a Winter City was presented during the 11th World Winter Cities 

Conference for Mayors – An average temperature below 32 0F during one month a year and an 

average snowfall of more than 8 in. of snow in a calendar year (Cui et al. 2010).  Considering the 

above definition, more than half of the North American cities listed in Table 3-1 fall into the 

category of winter cities.  Hence, it can be concluded that cold weather and snowfall are factors 

that contributed to implementing underground systems.  On the other extreme, Oklahoma City has 

extreme weather events (tornadoes) and suffocating heat which favored selecting a tunnel system.  

The climate of the city was seen to be the most significant factor when making the decision on 

whether to invest in an underground pedestrian system in the city or not.  When pedestrians are 

able to walk uninhibited by weather they spend more time outside their homes and apartments and 

take more trips than they would if they had no tunnel system to shelter them.  This helps stimulate 

the economy as there are more opportunities for spending. 

Table 3-2 lists weather conditions, city scale and economic level of a selected number of 

cities.  Along with the climate, the city scale is also found to be a motivating factor for UPS 

implementation.  In cities that have high population densities, the tunnel systems allow reducing 

crowding at the ground level.  As seen from the data presented in Table 3-2, except Oklahoma City 

and Harbin, all other cities have at a population density of more than 2,590 people/mi2.  The 

economic level of a city can also be a motivating factor.  The higher the per capital income for the 

city, the more likely they are to build a pedestrian tunnel system.  A majority of the North American 

Cities listed in the table have a per capita income in excess of $20,000.   
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Table 3-2.  Cities and Motivating Factor Information (Source: Cui et al. 2013) 

3.3 REVIEW OF EXISTING SYSTEMS 

Even though the published data suggests weather and population density at ground level as 

the motivating factors, several other factors might have contributed to implementation decisions.  

Also, literature is limited on the significance of the facilities connected through such systems, 

funding sources and mechanisms, and challenges and lessons learned from such implementations.  

Hence, this section of the report presents a review of two systems in Oklahoma City and Rochester, 

Minnesota. 

3.3.1 Oklahoma City Underground Pedestrian Facility 

As of 2014, Oklahoma City’s population was around 610,000.  The facility was formerly 

known as the ConnCourse, and is currently named the Underground.  Figure 3-1 shows the layout 

of the current system. 

Cities 

Weather Conditions City Scale 
Economic 

Level 

# of 

Months 

Below 

32F 

Annual 

Snowfall 

(in/y) 

Annual 

Average 

Temperature 

(F) 

Population 

(Thousand) 

Land 

Area 

(mi2) 

Density 

(People 

per mi2 ) 

Year 

Annual Per 

Capita 

Income 

(2009, US$) 

New York 1 23.6 76 8,392 304 27,687 2009 30,885 

Vancouver 0 22 63 578 45 13,818 2006 31,845 

Chicago 3 44 72 2,851 228 12,559 2009 27,138 

Montreal 4 84 68 1,621 141 11,497 2006 30,142 

Philadelphia 1 23.6 76 1,547 136 11,448 2009 21,661 

Toronto 4 49.6 68 2,503 244 10,288 2006 33,827 

Atlanta 0 2.1 79 541 131 4,134 2009 36,912 

Houston 0 0.4 83 2,258 580 3,898 2009 25,563 

Dallas 0 3.2 85 1,300 343 3,800 2009 25,941 

Winnipeg 5 44.4 65 675 180 3,769 2009 31,942 

Edmonton 5 49.6 59 782 265 2,961 2009 39,126 

Oklahoma City 0 9.2 81 560 607 925 2009 24,195 

Moscow 5 1097.6 61 10,523 418 25,214 2009 177,603 

Beijing 3 65.6 77 13,300 529 25,180 2009 4,490 

Hong Kong 0 0 85 7,034 427 16,501 2009 31,420 

Tokyo 0 6.8 77 12,989 845 15,377 2009 48,597 

Shanghai 0 1.6 81 11,346 1023 11,093 2009 4,743 

Nanjing 0 1.6 81 5,460 1824 2,995 2009 4,009 

Harbin 5 25.2 70 4,747 2736 1,736 2009 2,028 
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The tunnels were originally built in 1931 as a privately funded and owned facility by 

William Balser Skirvin to connect his Skirvin Hotel to the Skirvin Tower (Wikipedia 2016).  In the 

1970’s, Jack Conn from Fidelity Bank developed a section of downtown Oklahoma City (OKC) 

and wanted to connect to the existing tunnels in the city.  At the beginning there was no apparent 

direct economic benefit to be seen for Mr. Conn.  Motivation included weather extremes and 

opportunities for expanding retail business for the city.  The cost of an approximately a mile-long 

tunnel segment in the 1970’s reached $1.3 million.  Because of Mr. Conn’s work in developing 

the system, it was named as the Conncourse.  The tunnel system featured retail shops, services, 

restaurants, and clubs.  With the expansion completed, it became very popular and saw daily traffic 

of 30,000 to 40,000 pedestrians.  Expansion of the system continued into the 1980’s with multiple 

smaller connections.  Moving through the 1980’s and into the 1990’s the tunnel system suffered 

along with OKC.  The attractions in the tunnels mostly disappeared and the pedestrians were 

primarily limited to walkers on their lunch breaks.  The system was falling into disrepair.  In 1998, 

the tunnel system was being run by public money and the fire department had determined the 

tunnel system unfit for use.  An organization called the Downtown Oklahoma City, Inc. was 

created to assist with the tunnel redevelopment.  The group claimed responsibility for the system 

and received assistance from the newly created business improvement district in 2001.  The system 

was renovated in 2007 by integrating art galleries and renamed the Underground. 
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Figure 3-1.  Layout of OKC Underground (Source: DowntownOKC 2016) 
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3.3.1.1 The Facilities Connected through the System 

The tunnel system spans 20 square blocks and allows pedestrians to move throughout the 

business district easily with over 20 access points.  The system is open from 6 a.m. to 8 p.m. during 

weekdays and is useful in times of extreme weather conditions.  It also allows downtown workers 

easy access to parking garages and is a good exercise spot for walkers who want to avoid 

intersections (Figure 3-2).  The tunnel system connects directly into many businesses and parking 

garages.  Table 3-3 lists major facilities connected through the underground system.  As shown in 

the table, it still has its original connections with the Skirvin Hotel and Skirvin Tower (now known 

as 101 Park Avenue).  

 

Figure 3-2.  An interior view of the system (Source: NewsOK 2014) 

 

Table 3-3.  Connections to OKC Underground 

3.3.1.2 Funding Sources 

The underground system was originally built by people in the hotel business and extended 

by those in the oil industry, led by Jack Conn.  As time went by, the oil boom ended and the 

Underground ownership was handed over to public agencies.  The expansion to the tunnel system 

was part of a large urban renewal plan implemented in the 1970’s.  Expansions and renovations 
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Building 
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Parking 

Federal 

Courthouse 

First National 

Center 
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Cox Business Services 
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County Parking 
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Continental 

Resources 
Bancfirst Leadership Square 

Sheraton 

Hotel 
Plaza Parking  
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Natural Gas 

Bank of 

Oklahoma Plaza 

Dowell Center/Couch-

Kerr Park 

 
Sandridge Parking 

Garage 
 

Oklahoma Gas 

& Electric 
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are funded by private entities and through Federal Redevelopment Grants.  The maintenance cost 

of the system ranges from $150,000 to $200,000 a year.  About 75% of the funding comes from 

businesses with direct connections to the Underground.  The businesses are assigned a fee based 

on whether the business has a direct physical connection to the tunnel system or if it sees benefits 

from being within the proximity of the tunnels. 

Sources that work or have worked directly with the OKC Underground have stated that 

developing such a system would not have happened without the initial private funding push for 

the tunnel system.  The initial cost for a system similar to what OKC has would be beyond what 

most cities of their size could deal with.  

3.3.1.3  Challenges and Lessons Learned  

Complaints have accused the Underground of killing the street life as it brings people 

underground and off of the street level where many businesses have their storefronts.  Some have 

even gone as far as suggesting the shutdown of the tunnels, although it has not been considered.  

The popularity of the tunnel system also fell considerably after the last oil boom ended as a result 

of the depressed economy.  Today, the tunnel system has been called a “guilty pleasure” and has 

become so intertwined with OKC’s everyday life that many people would have a difficult time 

imagining the city without it.  

The upkeep and maintenance of the tunnels are challenging tasks.  The system has seen 

flooding due to broken and leaking storm pipes that run overhead the tunnels as well as storm 

events and construction from street updates above.  Unique difficulties are presented by the tunnels 

such as having to work carefully when constructing above it as well as flood control from storms 

and storm pipes.      

3.3.2 Rochester (Minnesota) Underground Pedestrian System 

As of 2013, population of Rochester, Minnesota, was around 110,000.  Rochester has an 

underground pedestrian system which is also known as a subway.  The original tunnel system 

connected the Kahler Hotel and the Mayo 1914 Building, which housed the Mayo Clinic’s private 

medical practice.  At that time, the system was primarily used by patients and doctors traveling 

back and forth from the Mayo medical buildings and the hotels at which they stayed.  Expansions 

for the next 5 years brought the tunnel system to other Kahler owned properties as well as other 
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buildings such as the Franklin Station power plant and multiple other hotels.  As time passed more 

extensions were added to the tunnel system.  In the 1990’s,  Kahler added more on to the system 

as a connection from the Marriot Hotel in Rochester to the foyer of the Heritage Hall of the Kahler 

Hotel.  The system was expanded by adding other important connections throughout the city.  The 

final addition was built in 2003 - a 600 ft extension under Center Street.  Error! Reference source n

ot found. provides an overview of the current system.  

 

 

Figure 3-3.  Overview of Rochester’s subway and skywalk system (Source: Dixon 2016) 

Today the underground pedestrian system is intertwined with thousands of hotel rooms, 

Mayo buildings, commercial buildings, restaurants, and entertainment venues.  The walkways 

above and below ground are well marked and are mall-like with bright lighting and a multitude of 
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public art among the shopping experience.  The Mayo Clinic has connections to nine different 

hotels (Figure 3-4).  This allows patients and visitors to conveniently travel to and from their hotels.   

 

Figure 3-4.  Subway connection in the Mayo Clinic Building (Source: Dixon 2016) 

3.3.2.1 Facilities Connected through the System 

The pedestrian subway system in Rochester serves many Mayo medical buildings in the area as 

well as many Kahler hotels and properties (Figure 3-5).  Rochester’s unique distinction with the 

medical field, the main attractor of pedestrians is the Mayo buildings and their surrounding hotels.  

Many of these buildings have direct connections to the subway.  Table 3-4 list major buildings and 

other facilities connected to the subway. 

 

Figure 3-5.  A view of the busy subway system in Rochester (Source: Baxter 2013) 
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Table 3-4.  Connections to Rochester’s Pedestrian Subway 

Hotels Parking Garage Medical Facilities Other 

Kahler Grand Hotel Mayo: Baldwin Ramp 
Baldwin Building 

(Mayo) 
Feith Family Statuary Park 

Rochester Marriott Hotel Mayo: Damon Ramp 
Harwick Building 

(Mayo) 
St. John’s Catholic Church 

Broadway Residences & Suites  Hilton Building (Mayo)  

Kahler Inn and Suites  Mayo Building  

Double Tree Hotel  Gondola Building  

Hilton Garden Inn  Mayo Clinic Hospital  

Holiday Inn Express    

Residence Inn by Marriott    

Brentwood Inn & Suite    

3.3.2.2 Funding Sources 

Rochester had its tunnel system started by Mayo and it is still privately owned by Mayo 

and Kahler. 

3.3.2.3 Challenges and Lessons Learned  

Primary maintenance concern is flooding as shown in Figure 3-6. 

 

Figure 3-6.  Flooding of the Rochester subway (Source: Sederstrom 2013) 

3.3.3 Review Summary of Two Case Studies 

The cost of building an underground pedestrian system can run 3 to 10 times beyond the 

cost of a similar project at grade level (Cui et al. 2010).  The initial costs of a tunnel system is very 

expensive and could result in difficulties in getting residents’ support for using public money.  

Oklahoma City and Rochester underground pedestrian facilities were developed with private 

funding.  In Oklahoma City the tunnel system was started by private hotel owners and expanded 

by Jack Conn later.  Eventually private funding support was lost and the reliance of the OKC 

downtown residents on the system resulted in public entities taking over as they had grown 
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accustomed to the tunnels.  Rochester had its tunnel system started by Mayo and it is still privately 

owned by Mayo and Kahler.  

Along with the initial private funding, it would be important to consider both the prior 

cases to be out of the norm for the size of population that both have.  Many cities that implement 

pedestrian tunnel systems do so for easing densities as well as weather avoidance, although they 

have much more money at their disposal than smaller cities.  The average population of a North 

American city listed in Error! Reference source not found. is 1.7 million, 1.1 million more than O

klahoma City and 1.5 million more than Rochester.  In both cities, the UPS has provided many 

positives (inclement weather avoidance, relief of pedestrian density, etc.) as well as unique design 

and upkeep issues (flooding, high maintenance costs, etc.).   

3.4 EVALUATION OF A SMALL CITY FOR A UPS - CITY OF KALAMAZOO  

Downtown Kalamazoo, MI, is considered as a case study.  First, the motivating factors 

relevant to Kalamazoo are compared with those of cities that have UPSs.  Then the similarities and 

differences between Kalamazoo and the two previous case studies of Oklahoma City and 

Rochester are analyzed.  Finally, conclusions and suggestions for downtown Kalamazoo are 

presented. 

The main motivating factors for cities to implement an underground pedestrian system are 

climate, size of a city (in terms of population, land area, and population density), and economic 

level.  Climate was the driving factor in North American cities.  In analyzing climate, focus is on 

whether the city is a winter city and the amount of snowfall or precipitation that it receives.  Table 

3-2 is updated with relevant data for Kalamazoo and presented as Table 3-5.   

Reviewing the table from left to right, it appears that Kalamazoo has climate conditions 

that favor having a UPS - an average temperature below 32 ºF for 3 months and an average 

snowfall of about 62 in. per year.  The average yearly temperature in Kalamazoo is about 48 ºF 

(NOAA 2016).   

Downtown Kalamazoo has the least population and the least land area compared to all the 

cities listed in Table 3-5.  Because of the smaller land area, the city has a very high population 

density.  With these numbers it is difficult to justify having a UPS.  
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Finally, the per capita income is the lowest among the North American cities listed in the 

Table 3-5.  Lower economic levels mean less money to put forth into an underground pedestrian 

system that requires great initial investment and high maintenance.   

Underground pedestrian systems in Oklahoma City and Rochester were initially developed 

with private funding.  Kalamazoo Bronson Methodist Hospital also has an underground pedestrian 

system that connects all the hospital buildings.  However, none of these tunnels are connected to 

downtown streets.  In addition, a section of downtown streets have a snow melting system.  Having 

a snow melting system encourages at grade pedestrian activities.   

Further, several privately owned skyways are located in downtown Kalamazoo connecting 

hotels, parking garages, and offices.  The purpose of providing skyways in Kalamazoo is to 

minimize street crossings and exposure to inclement weather.  These skyways are used solely by 

pedestrians and do not have shops located within them.  It appears to be redundant to offer skyways 

and UPSs in Kalamazoo.  Overall a UPS can be a benefit to the city and its residents but it has 

costs beyond that of a similar construction at grade.  At this point it appears that Kalamazoo would 

have a difficult time justifying a pedestrian tunnel system outside any private investments. 
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Table 3-5.  Comparison of Kalamazoo against the Other Cities having UPSs 

 

  

Cities 

Weather Conditions City Scale 
Economic 

Level 

# of 

Month 

Below 

0F 

Annual 

Snowfall 

(in/y) 

Annual 

Average 

Temperature 

(F) 

Population 

(Thousand) 

Land 

Area 

(mi2) 

Density 

(People per 

mi2 ) 

Year 

Annual Per 

Capita Income 

(2009, US$) 

New York 1 23.6 76 8,392 304 27,687 2009 30,885 

Moscow 5 1097.6 61 10,523 418 25,214 2009 177,603 

Beijing 3 65.6 77 13,300 529 25,180 2009 4,490 

Hong Kong 0 0 85 7,034 427 16,501 2009 31,420 

Tokyo 0 6.8 77 12,989 845 15,377 2009 48,597 

Vancouver 0 22 63 578 45 13,818 2006 31,845 

Chicago 3 44 72 2,851 228 12,559 2009 27,138 

Montreal 4 84 68 1,621 141 11,497 2006 30,142 

Philadelphia 1 23.6 76 1,547 136 11,448 2009 21,661 

Shanghai 0 1.6 81 11,346 1023 11,093 2009 4,743 

Toronto 4 49.6 68 2,503 244 10,288 2006 33,827 

Atlanta 0 2.1 79 541 131 4,134 2009 36,912 

Houston 0 0.4 83 2,258 580 3,898 2009 25,563 

Dallas 0 3.2 85 1,300 343 3,800 2009 25,941 

Winnipeg 5 44.4 65 675 180 3,769 2009 31,942 

Nanjing 0 1.6 81 5,460 1824 2,995 2009 4,009 

Edmonton 5 49.6 59 782 265 2,961 2009 39,126 

Rochester 3 54 46 110 55 2,026 Varies 30,977 

Harbin 5 25.2 70 4,747 2736 1,736 2009 2,028 

Oklahoma City 0 9.2 81 560 607 925 2009 24,195 

Kalamazoo 3 62.8 49 76 25 19,943 Varies 19,064 
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4 ABOVEGROUND PEDESTRIAN SYSTEMS 

4.1 OVERVIEW 

Aboveground pedestrian systems (AGPSs) comprised of very short pedestrian bridges as 

well as extensive networks of above ground facilities (skywalks) that helps getting non-motorized 

traffic moving from one point to another.  The structural systems and architecture used in these 

facilities can range from very expensive elegant structures to very simple bridges.  In the 1960’s 

and 1970’s, approximately 20 to 30 cities in the United States adopted the idea of implementing 

skywalk systems in their cities (Cornwell 2006).  Skywalks may be enclosed and climate 

controlled, offering protection from extreme weather such as heat, freezing conditions, 

thunderstorms, and snow storms.  Less expensive skywalk segments are open and provides less 

protection than enclosed segments.  Some skywalks may not even have a roof.  Figure 4-1 shows 

an example of a simple bridge.   

 

Figure 4-1.  A bridge crossing a freeway (Source: Pinterest 2016) 

4.2 MOTIVATING FACTORS 

In the 1960’s and 70’s, many cities throughout the United States incorporated skywalks.  

This became popular due to the newly formed shopping malls that offered a complete indoor 

shopping experience.  It is expected that skywalks would help attract people to downtown areas 

and offer a more urban feel.  Although specific reasons for implementing a skywalk network in a 

city may differ from one to another, city development is the primary reason for implementing a 

skywalk network.  When covered skywalks are connected to office buildings and businesses, an 



Infrastructure and Technology for Sustainable Livable Cities 

56 

increase in business activities are observed because office workers are more likely to go out during 

lunch break irrespective of the outdoor exposure conditions.    

Skywalks offer safe passages by separating pedestrians from vehicular traffic.  Some cities 

use skywalks for efficient use of the available area by creating additional spaces above the streets.  

As shown in A city may find skywalks desirable for a number of reasons.  A general list of 

motivational factors is given below:    

 Connect nearby business facilities  

 Elevate pedestrians to a location away from moving vehicular traffic  

 Expand businesses  

 Improve comfort level for pedestrians and workers 

 Maximize the use of space in downtowns 

 Improve property values 

 Make a city feels more urban and up to date  

 Provide protection against poor weather and harsh climate conditions.  
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Table 4-1, Bangkok, Hong Kong, and Mumbai have the highest population densities and 

uses skywalks to reduce street level crowding.    

As cities grow, businesses within them tend to grow as well.  Skywalks are used for 

expanding the spaces owned by the same business by bridging adjacent buildings.  As part of the 

Milwaukee’s Skywalk System, Northwestern Mutual connected neighboring buildings to expand 

the space that they owned.  Due to convenience and comfort offered by skywalks, building owners 

charge higher rates for skyway-connected properties (Roper 2012).      

A city may find skywalks desirable for a number of reasons.  A general list of motivational 

factors is given below:    

 Connect nearby business facilities  

 Elevate pedestrians to a location away from moving vehicular traffic  

 Expand businesses  

 Improve comfort level for pedestrians and workers 

 Maximize the use of space in downtowns 

 Improve property values 

 Make a city feels more urban and up to date  

 Provide protection against poor weather and harsh climate conditions.  
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Table 4-1.  Facts about Skywalk Bearing Cities 

Cities 

Weather Conditions City Scale 

Average 

Annual 

Snowfall (in) 

Avg.  Snowfall 

(days/year) 

Population 

(2010 Census) 

Area 

(mi2) 

Density 

(People per mi2) 

Per Capita 

Income ($) 

Mumbai, India - - 12,478,447 232.9 53,603 1,858 

Hong Kong - - 7,024,200 426.00 16,488 31,420 

Bangkok, Thailand - - 8,280,925 606.00 13,665 13,623 

Toronto, Ontario 48.8 40.9 2,615,060 243.3 10,749 55,923 

Hartford, Connecticut 41.2 20.1 124,775 18 6,952 16,448 

Baltimore, Maryland 20.6 9.6 620,961 92.3 6,729 24,155 

Minneapolis, Minnesota 54.9 37.3 382,578 58.5 6,548 30,734 

Milwaukee, Wisconsin 47.7 35.3 594,833 96.8 6,147 19,199 

Rochester, New York 101.1 65.9 210,565 37.2 5,675 18,757 

Detroit, Michigan 43.4 36.4 713,777 142.9 4,997 14,861 

Grand Rapids, Michigan 76.1 52.1 188,040 45.3 4,155 20,147 

Cincinnati, Ohio 4 28.4 296,943 79.6 3,733 24,538 

Winnipeg, Manitoba 45.5 53 663,615 179.3 3,704 31,942 

Spokane, Washington 45.6 34.4 208,916 60.1 3,481 24,034 

Calgary, Alberta 21.7 129 1,096,833 318.6 3,443 43,637 

Atlanta, Georgia 3 2.1 420,003 132.4 3,173 35,719 

Kalamazoo, Michigan 59.1 44.6 74,262 25.2 2,958 18,402 

Des Moines, Iowa 35.5 26.2 203,433 82.6 2464 23,914 

Charlotte, North Carolina 4.4 1.9 731,424 297.7 2458 31,653 

Indianapolis, Indiana 26.4 23.5 820,445 372 2207 24,340 

Sioux City, Iowa 35.4 25.5 82,684 58.9 1404 21,742 

Morristown, Tennessee 8.8 4.2 29,137 20.9 1397 17,718 

Duluth, Minnesota 87.5 60.6 86,265 87.5 987 24,480 

Oklahoma City, Oklahoma 8 5.6 579,999 620.00 935 24,629 

Kansas City, Kansas 13.6 8.3 145,786 319 456 18,771 

4.3 REVIEW OF EXISTING SYSTEMS 

4.3.1 Skywalk System in Des Moines, Iowa 

Des Moines, with a population of approximately 200,000 people, has one of the most 

extensive skywalk systems in the country.  Originally covering 12 blocks, the system now 

encompasses about 60 blocks with over three miles of indoor climate controlled walkways.  

Construction began in 1969 with a majority of the skywalks being implemented in the 1980’s.  A 

map of the current skywalk system is available in a mobile phone application (Figure 4-2).  The 

map shows sidewalk access points (also locating handicap accessible points) and provide detours 

for temporarily closed skywalk segments.   
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Figure 4-2.  Skywalk map on the app (Source: SkywalkDSM 2016) 

The primary objective for developing a skywalk system was to inspire economic 

development in Des Moines by attracting new businesses to the downtown area while maintaining 

existing businesses.  The existing skywalk system helps making the downtown area more compact 

as the city continues to evolve and become more populated.  The skywalk system is not entirely a 

public property.  In general, the city of Des Moines provides funds for construction of skywalks 

crossing the street (when right-of-way for construction is required) and building owners pay for 

private skywalks within their premises.   

The city of Des Moines is working on better integrating their sidewalk and skywalk 

systems.  As investment in improving the quality of the pedestrian experience continues, early 

returns are observed.  Favorable responses to the investments are observed in terms of increased 

private investments, thriving retail businesses, and increased pedestrian activity.  Investment in the 

quality of the pedestrian experience includes additional signage as well as updating out-of-date 

signage.  It also includes having additional, and more identifiable, vertical connections from the 

sidewalk to the skywalk.  The city also wants to work on adding “beauty”, as continually requested 

by citizens at public meetings (Crownie et al. 2008).  This not only includes the beauty of the 

skywalk itself but the view the skywalk offers from an elevated position in comparison to the 
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sidewalk.  Figure 4-3 shows an inside view of a skywalk segment crossing a street within 

downtown Des Moines. 

 

Figure 4-3.  An inside view of a skywalk segment in Des Moines (Source: Carole 2013) 

The city is planning for additional connections between existing skywalks as well as 

extending the skywalk to growing downtown locales.  The future expansions will encompass the 

west side of the Des Moines River, the Methodist Hospital and related medical campuses, popular 

transit stops, and parking structures.  It is noted that most of the large employers that have office 

buildings in downtown do have connections to nearby parking structures.  However, those 

structures are primarily used by the people working in that particular building and need to be 

expanded to connect with the rest of the systems to better serve the pedestrians traversing the city. 

Challenges of expanding existing systems or developing new systems are in general related 

to city’s existing infrastructure.  For example, many existing structures need evaluation, 

repair/retrofits, or in some cases even replacement in order to incorporate skywalks.  The skywalk 

infrastructure require routine inspection and maintenance.  The private and public relationship that 

builds the skywalk system makes it difficult to manage.  Another challenge for a city is to make 

vertical access points more abundant and identifiable.  This has become a problem for the skywalk 

system because many of the vertical access points are located within private business properties.  

Another consideration for developing or expanding skywalk systems is the impact on city’s 

landscape and aesthetics.  

4.3.1.1 The Facilities Connected through the Des Moines Skywalk System 

A Partial list of major facilities connected to the skywalk system is given below:  

 Wells Fargo Arena- A 16,980-seat multi-purpose arena 

 Community Choice Credit Union Convention Center (Iowa Events Center) - Features 

29 meeting rooms and a 28,730 square feet ballroom   

 Hy-Vee Hall- Contains over 150,000 square feet of space for events, meetings, etc.   



Infrastructure and Technology for Sustainable Livable Cities 

61 

 Wellmark YMCA- Community-focused nonprofit offering recreational programs 

 Renaissance Des Moines Savery Hotel- 11-story hotel with conference rooms and over 

12,000 square feet of space   

 Des Moines Performing Arts (Civic Center) - Performing art center, features two 

theaters and a park   

 Des Moines Information Center- City government information and referral center   

 Hyatt Place Des Moines Downtown- 12-story hotel with 1,050 ft2 of meeting spaces 

 Des Moines Marriott Downtown - 33-story hotel featuring 417 rooms and suites   

 Des Lux Hotel- 5-story upscale hotel with 51 rooms.   

4.3.2 Skyway System in Cincinnati, Ohio 

Cincinnati had the idea to build a skywalk in their city back in the 1960’s.  The idea came 

to life in the 1970’s, as the first link of the skywalk connected Fountain Square to the Convention 

Center in 1971.  Construction was completed in 1998.  The entire 1.3-mile skywalk is mostly 

enclosed.  The total cost is little over $16M (Alltucker 2003). 

Some cities saw skywalks as a way of modernizing their pedestrian experience.  The goal 

is to make pedestrians feel cleaner and safer being elevated off the streets (Healy 2005).  

Cincinnati’s skywalks are no different, and were an attempt of modernizing their city and meant 

to be an asset to the downtown area.  However, the skywalk made the streets feel deserted and 

lifeless.   

Between general maintenance and safety, the skywalks had their fair share of problems.  

When the skywalk was built, the city had made approximately 40 different arrangements with 

private business owners.  These arrangements were meant to act as a contract to take care of regular 

maintenance of a designated section of the skywalk.  These arrangements were not well detailed 

for the business owners to understand their responsibilities.  The businesses often tend to disregard 

the general maintenance.  This led to problems such as unfixed broken windows, drainage issues, 

leaky roofs, rust, etc.  Due to lack of maintenance, the open-climate skywalk segment was torn 

down in 2012.   
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4.3.2.1 The Facilities Connected through the System 

Layout of the skywalk network in Cincinnati is shown in Figure 4-4.  This walkway 

provides access to many facilities in the downtown area.  A partial list of the major facilities is 

given below: 

 Duke Energy Convention Center - Over 750,000 ft2 of area including a ballroom   

 Saks Fifth Avenue. – A two-story, designer department store  

 Carew Tower - An observation deck for Cincinnati standing 49 stories high.  Carew 

Tower incorporates a total of 25 different shops, restaurants, and offices.   

 Tower Place Mall - A closed mall in the same block district as Carew Tower 

 Fountain Place Lazarus - A three-story department store with 814,000 ft2 

 Westin Hotel - Historic hotel made in 1897 with 188 rooms spanning the 4th to 17th floor   

 Fountain Square District - Includes many shops and acts as a town square above ground.   

 Fifth Third Bank Center - Headquarters of Fifth Third Bank, 30 stories high 

 580 Walnut Offices - Office buildings that are currently closed.  

 Federal Courthouse - Courthouse and Federal Building.  

 John Weld Peck Federal Building - Federal Government Office. 

 250 E. Fifth St. (Chiquita Building) – Building with 29 floors that hold offices.  Currently 

looking to rent out top 6 floors. 

 PNC Center - Building with 27 floors that are used for offices and commercial use.   

 

Figure 4-4.  Skywalk network in downtown Cincinnati (Source: Google) 
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4.3.3 Skywalk System in Milwaukee, Wisconsin 

Figure 4-5 shows the network layout.  The total length of the skywalk system is 1.75 miles.  

It is used to connect adjacent buildings, either across the street or on the same side of the street.  

There are two skywalks that act as foot bridges across the Milwaukee River.  The entire system is 

privately owned and maintained.  It is open from Monday through Friday from 7:30 am to 5:30 

pm, but certain sections that are controlled by business owners are closed during certain hours 

(Milwaukee Downtown 2016).   

 

Figure 4-5.  Downtown Milwaukee skywalk network (Source: Milwaukee Downtown 2016) 

The system connects over 10,000 parking spots located in parking structures and allows 

thousands of people to move directly from their parking spots to work or to a department store for 

shopping.  Skywalks helps businesses expanding their office space and working area.  In the case 

of Northwestern Mutual Fund, the company purchased a building across the street of their existing 

address and planned on moving employees to this new location.  The new building is used as an 

extra storage with additional office spaces (Ryan 2012).  The company used a skywalk to connect 

the buildings and bring unity back to the offices.  Many other skywalks throughout Milwaukee 

offer a synergistic vibe to the businesses.  For example, connecting a strip mall to a hotel can offer 
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a lot of persuasion to where someone may venture out to go shopping or eat, potentially increasing 

sales for nearby businesses. 

Businesses that have attached skywalks will pay for leasing the air space.  Northwestern 

Mutual was permitted the lease the air space above the street to construct a skywalk connecting 

two office buildings.  Northwestern Mutual pays $5,000 annually as the rental fees for the air space 

(Daykin 2014).   

In the past, Milwaukee skywalks were used to retain large business in the area.  In 1996, 

Milwaukee City officials agreed to pay $600,000 on a $1.2M bill for adding a skywalk connecting 

Firstar Center and the Lewis Center spanning across Van Buren St.  The city stated the decision 

was made as part of an economic development.  The skywalk helps retain Firstar Center in 

Milwaukee to pays a large amount of taxes to the city (Daykin 1996).     

4.3.3.1 The Facilities Connected through the System 

An overview of the system and major establishments connected through the system are 

listed below.  In addition, Table 4-2 listed the facilities as hotels, parking garages, etc.  General 

information about the skywalk system:  

 1.75-mile skywalk system 

 18 coffee shops 

 2,497 beds in hotels 

 10,399 parking spots within 13 parking structures 

 6 fitness centers 

 11 banks and ATMs 

 28 eateries, ranging from steakhouses to quick stop and goes 

 Connects over the Milwaukee River in two different locations 

Buildings connected through the system: 

 Faison Building – 430,865 ft2 of Class A office space in a 35-story tower   

 The Riverside Theater – Historic theater with 1,339 seating 

 Wisconsin Center District - Convention and entertainment center 

 Hyatt Regency Milwaukee – A hotel with 481 guestrooms 

 Hilton Milwaukee City Center – a four diamond hotel with 729 rooms and suites 
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 Spring Hill Suites – six-story hotel opened in June, 2016 

 The Blue – Office space with 20,000 square feet ground retail space 

 Shops of Grand Avenue - Urban shopping plaza spanning a total of three blocks 

 Courtyard Milwaukee - six-story hotel with 169 rooms and suites 

 Residence Inn – seven-story hotel with a business center and three meeting rooms 

 Chase Tower – a 22-story skyscraper with 480,000 square feet of office space   

 250 E. Wisconsin Avenue. – a 20-story office building with 200,039 square feet.   

Table 4-2.  Major Skywalk Connections in Milwaukee 

4.4 FUNDING SOURCES 

In certain cities, the private sector invested in skywalks based on their needs.  With others, 

the city completely or partially financed the construction.  Cincinnati is an example of a city where 

the public sector provided funding to implement a skywalk network.  Cincinnati implemented a 

1.3-mile skywalk over the course of 17 years with a net cost of approximately $16 million.  

Cincinnati public money also paid for the removal of specific, unwanted segments.   

In Milwaukee, funding was provided by private businesses.  The businesses have to go 

through an approval process to receive a permit for adding a skywalk segment.  In Milwaukee, the 

public sector makes money from private sector investments because the city does not pay for the 

construction but charges the business for leasing the air space above the street.  Due to the private 

business involvement in the construction of these skywalks, funding amounts are not available in 

the public domain and might require contacting city officials for records.     

Des Moines funding mechanism differs from both Cincinnati and Milwaukee.  In Des 

Moines, the city will pay for the construction of skywalks passing over the street, when right-of-

way is required.  However, Des Moines does not pay for the private segments within a business 
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Hilton Milwaukee 

City Center 
310 W. Wisconsin Faison Building 

Chase 

Tower 

Wisconsin Center 

District Convention 

Center 

Hyatt Regency 

Milwaukee 
Isaacs Family Limited The Blue   Riverside Theater 

Spring Hill Suites  
The Shops of Grand 

Avenue Parking 

250 E. Wisconsin 

Ave.  
 

The Shops of Grand 

Avenue 

Residence Inn by 

Marriott 
Central Parking    

Courtyard Milwaukee 

by Marriott 
    



Infrastructure and Technology for Sustainable Livable Cities 

66 

entity.  Due to the private business involvement in the construction of these skywalks, funding 

amounts are not available in the public domain and might require contacting city officials for 

records.     

4.5 LESSONS LEARNED 

Funding and implementing a skywalk network by public sector is risky business.  It is risky 

because the people that are supposed to utilize the network may not appreciate it.  The skywalk 

may become underappreciated due to aesthetic reasons, or perhaps the location is not quite right 

for it to be used by most people.  It is potentially more expensive than just the cost of construction 

as there can be added costs due to maintenance and climate control.  When a city implements the 

skywalk, the city must decide who is responsible for maintenance as well.  In Cincinnati’s case, 

the city made agreements with the businesses that were directly attached to the skywalks to make 

them responsible for general maintenance.  When the skywalks are abandoned by their designated 

businesses, they become grungy and uncomfortable for pedestrians to use.  The people that are 

supposed to use them now avoid them like a dark alley.  With public skywalks, they are open all 

the time, just like the roads.  This can attract disorderly teenagers to hangout in the segments with 

dead ends or similar areas.       

A great benefit of the skywalks being privatized is that it almost guarantees it will get well 

utilized.  The only reason a company is going to pay for a skywalk to be connected to their place 

of business is if it will provide a valuable function.  Whether it is for a business opportunity to 

have more people walk past your store or to connect two offices, the skywalk will be put to good 

use under private funding.  Furthermore, the skywalk will not be abandoned into disrepair by its 

business that it connects to.  A major drawback of having private entities funding and operating 

skywalks is the controlled hours of operation.  The skywalk may only be open for a limited number 

of hours a day making it inconvenient to public.  However, this becomes a challenge only if the 

closed section becomes a bottleneck for the operation of the rest of the network. 

With skywalk networks, there is a decrease in street level activity.  This can be seen as a 

benefit, if attracting people to an elevated position (and away from vehicular traffic) is the goal.  It 

can have a negative impact as it may reduce business to the retailers at the ground level.     

A list of general lessons learned is given below:   

 Publicly funded skywalks can be a burden to the tax payers 
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 Skywalks that incorporate both private and public funding can be more difficult to 

manage unless clear maintenance instructions and guidelines are presented.  

 Appropriate signage and directions are necessary within a skywalk. 

 Skywalks are better accepted when they are aesthetically pleasing. 

 Presence of adequate number of easily identifiable vertical access points are 

important to make a system attractive. 

 Skywalks are useful and appreciated in colder climates 
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5 TECHNOLOGY FOR IMPROVING SUSTAINABILITY AND 

RESILIENCE 

5.1 OVERVIEW 

Pedestrian lighting systems and snow melting systems are described in this chapter.  Also, 

planning tools for identifying optimum locations for installing renewable power sources such as 

wind and solar are discussed.  In addition, implementation case studies and challenges and lessons 

learned are presented.   

5.2 PEDESTRIAN LIGHTING 

Pedestrians must be able to safely navigate through streets and walkways.  Lighting 

systems must be properly installed and maintained to ensure pedestrian safety; thus, rationally 

developed guidelines are needed.  Also, use of energy efficient luminaries are needed to reduce 

operational costs.  This section synthesizes types of luminaries and performance (in terms of 

efficiency), a commonly used tool for designing lighting configurations, and cost of 

implementation.   

5.2.1 Luminaire  

5.2.1.1 Types of Luminaires 

There are three major luminaire types used in street lighting systems: high intensity 

discharge (HID), fluorescent, and incandescent.  Among these, HID lamps are the most common 

type.  The most common HID lamps are mercury vapor (MV), metal halide (MH), and high 

pressure sodium (HPS).  Of these three types, HPS and MH are predominant.  MH lamps offer 

superior color quality with a bright white light output, while most HPS lamps offer greater 

efficiency at the expense of color rendering by producing an amber light (Pipattanasomporn et al 

2014).  More recently, Light Emitting Diodes – LED are considered by many agencies due to its 

lower power consumption; thus, lower operational costs (Relume 2016; Gibbons et al. 2015).  

5.2.1.2 Typical Arrangement 

Lighting systems follow set requirements and arranged in various configurations (BS 5489 

2013).  The three common configurations are one-sided, two-sided staggered, and two-sided 

coupled.  Figure 5-1 illustrates these 3 arrangements.  The one-sided arrangement utilizes the 

luminaires on one side of a road.  The two-sided coupled arrangement is most commonly seen on 
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highways, interstates, and most streets because of its functionality and expansive coverage for 

pedestrians.  The staggered arrangement involves each luminaire being placed, alternating from 

one side to the other.  This arrangement overlaps the coverage of each luminaire and increases the 

glare towards likely pedestrians.  The hatched area shown with each configuration is the theoretical 

area illuminated by each individual luminaire assumed for design calculations. 

 

(a) One-sided 

 

(b) Two-sided coupled 

 

(c) Two-sided staggered 

Figure 5-1.  Lighting configurations (Rabaza et al 2013) 

Rabaza et al. (2016) presented typical guidelines used by lighting designers for selecting a 

lighting configuration (Table 5-1).  However, the guidelines do not include a criterion to determine 

spacing of luminaries for each configuration. 

Table 5-1.  Lighting Configuration and Width/Height Ratio (Rabaza et al. 2016) 

Configuration (Street width, )/(Mounting Height, H) 

One-sided B/H < 1 

Two-sided staggered 1 ⩽ B/H < 1.5 

Two-sided coupled 1.5 ⩽ B/H 

5.2.1.3 Luminaire Efficiency 

Rabaza et al. (2013) conducted a study evaluating the efficiency of luminaries following 

2008 Street Lighting Energy Efficiency Criterion (SLEEC) and International Commission on 

Illumination (CIE) standards.  An efficiency of a luminaire system is evaluated using Eq.1 while 
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an efficiency of a single luminaire is evaluated using Eq. 2.  In these equation, AT is the total 

surface area illuminated by luminaries; Eav is the average illuminance; PT is the total electrical 

power consumed by the entire system; A is the surface area for a single luminaire that is determined 

based on the lighting arrangements shown in Figure 5-1; and P is the electrical power consumed 

by one luminaire that includes light sources and electrical auxiliary devices/systems.   

 = AT × Eav/PT         (1) 

= A × Eav/P         (2) 

As an example, Rabaza et al. (2016) evaluated energy efficiency variation of LED, HPS, 

MH, and High Pressure Mercury (HPM) luminaires against /H ratio (i.e., the ratio of street width-

to-height of luminaries).  As shown in Figure 5-2, the LED luminaire exhibited the highest 

efficiency (~ 40 Lux m²/W) with a /H ratio of about 1.4.  Efficiency of HPS luminaire exhibits a 

constant increase until /H = 1.7, and remains constant at 28 Lux m²/W up to /H = 2.  The HPM 

luminaire exhibited the same trend as LED and HPS but the efficiency of HPM was significantly 

lower.  Efficiency of MH and HPM luminaries are at or below 50% of the average LED efficiency 

even with a /H ratio of 2.  Of the four luminaires used in the energy efficiency analysis, the LED 

was found to be the luminaire with the highest efficiency.  Even though the initial implementation 

cost is high, higher efficiency makes life-cycle cost of LED much lower (Relume 2016).  Hence, 

LED is used to replace other luminaire types.      

Based on the data from the analysis shown in Figure 5-2, which complies with CIE and 

SLEEC recommendations, more advanced polynomial models were constructed by Rabaza et al 

(2016) displaying the energy efficiency of each luminaire type as a function of /H ratio.  Eq. 3 is 

a quadratic polynomial representing efficiency variation of a luminaire.  

 = a0 + a1 × (/H) + a2 × (/H) 2     (3) 

where ai represents polynomial coefficients specific to each luminaire type.  As an example, 

Figure 5-2a shows variation of LED 131W luminaire efficiency against /H ratio and the 

polynomial derived through curve fitting.  According to the polynomial, a0 = 17.035, a1 = 54.254, 

and a2 = 0.5993.  Hence, the efficiency of the specific LED 131W luminaire system is represented 

by Eq. 4.  For other luminaire types, manufacturers are expected to present all the system 

components in a lighting system and the efficiency variation for designers to use.  
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 = 17.035 + 54.254 (/H) + 0.5993 (/H) 2    (4) 

 

 
Width-to-height ratio (/H) 

(a) 131 W LED 

 

 
Width-to-height ratio (/H) 

(b) 150 W High Pressure Sodium 

 

 
Width-to-height ratio (/H) 

(c) 171 W Metal Halide 

 

 
Width-to-height ratio (/H) 

(d) 250 W High Pressure Mercury 

Figure 5-2.  Energy efficiency variation against width/height ratio (Rabaza et al. 2016) 

The EU standard EN13201-5 defines Streetlight Energy Efficiency Criterion (SLEEC).  As 

shown in Eq. 5, an efficiency parameter is calculated based on illuminance based lighting design 

(SE) or luminance based design (SL).  Table 5-2 shows energy efficiency classification based on 

SE or SL values.  As an example, if SE calculated for a specific luminaire falls within the range of 

0 to 0.014 W/ (lux. m2), that luminaire belongs to the highest energy efficient class – A.  The 

efficiency parameter provides an opportunity to select the most energy efficient luminaire type 

from a group of luminaries considered for a specific application.   

SE or SL = 1/        (5) 
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Table 5-2.  Energy Efficiency Classification of Luminaire (Rabaza et al. 2016) 

Energy Class SE W/(lux·m2) SL W/(cd/m2)/m2 

A 0.000–0.014 0.00–0.21 

B 0.015–0.024 0.22–0.36 

C 0.025–0.034 0.37–0.51 

D 0.035–0.044 0.52–0.66 

E 0.045–0.054 0.67–0.81 

F 0.055–0.064 0.82–0.96 

G 0.065–0.074 0.97–1.11 

5.2.1.4 Lighting Series Classes 

Table 5-3 presents lighting series classes based on roadway or pedestrian/cyclist pathway 

traffic exposure conditions (such as conflict areas, low speed areas, and high speed areas).  In 

addition, the table provides an average minimum illuminance and luminance levels for each class 

and the minimum uniformity requirement.  Uniformity (U0) is defined as the ratio of minimum to 

average illuminance (Emin/Eave).  The P series is relevant to pedestrians and cyclists on road areas 

lying separately along a traffic area (BS 5489 2013).  For P series, the minimum average 

illuminance ranges from 2 to 15 lux.  The CE series is also applicable to pedestrians and cyclists.  

For CE series, the minimum average illuminance ranges from 7.5 to 50 lux.  Selection of an 

appropriate lighting class depends on many factors such as ambient luminance condition, roadway 

type and uses, and amount of traffic (Table 5-4 and Table 5-5).  Once a lighting class is selected, 

average minimum illuminance or luminance as well as the uniformity can be selected.   

Table 5-3.  Lighting Series Classes and Corresponding Average Minimum Illuminance and Luminance, and 

Uniformity (CIE 2013) 

 Lighting Series Class U0 

Low speed areas P6 P5 P4 P3 P2 P1    ≥ 0.2 

Conflict areas    CE5 CE4 CE3 CE2 CE1 CE0 ≥ 0.4 

High speed areas   ME6 ME5 ME4 ME3 ME2 ME1  ≥ 0.4 

Average Minimum Illuminance (lux) 2 3 5 7.5 10 15 20 30 50  

Average Minimum Luminance (cd/m2)   0.3 0.5 0.75 1 1.5 2   
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Table 5-4.  Lighting Classes for Subsidiary Roads with Mainly Slow-Moving Vehicles, Cyclists, and 

Pedestrians (BS 5489 2013) 

Traffic Flow 
Ambient Luminance 

Very low (E1) or low (E2) Moderate (E3) or high (E4) 

Busy P4 P4 

Normal P5 P5 

Quiet P6 P6 

 

Table 5-5.  Lighting Classes for City and Town Centres (BS 5489 2013) 

Type of traffic 

Lighting class 

Normal traffic flow High traffic flow 

E3 E4 E3 E4 

Pedestrian thoroughfare P2 P1 P2 P1 

Pedestrian only CE4 CE3 CE3 CE2 

Mixed vehicle and pedestrian with 

separate footways 
CE3 CE2 CE2 CE1 

Mixed vehicle and pedestrian on 

same surface 
CE2 CE1 CE1 CE1 

5.2.2 Tools for Designing Lighting Configurations 

DIALux, is a program used to calculate Eave and U0 parameters.  DIALux utilizes different 

luminaire types available in an online catalog linked to the luminaire section of the software.  

Luminaire types are selected and other parameters such as pole spacing, pole height, light 

overhang, maintenance standard, and luminaire arrangement (which includes height (H), spacing 

(S), width (ω), and configuration) are defined.  The program output include the minimum Eave and 

U0 values for the defined configuration.  These values are then compared to the minimum and 

average standard values (set by both the CIE and the BS EN standards).  As an example, lighting 

class can be selected from Table 5-4 or Table 5-5 and the minimum Eave and U0 values are 

determined from Table 5-3 to check against the software output.  When the requirements are not 

satisfied, either luminaire type, spacing, arrangement, or a combination thereof is changed until 

satisfactory results are obtained.  Rabaza et al. (2016) demonstrate application of DIALux 

software for evaluating various lighting configurations and luminaire types.   

5.2.3 Case Studies  

5.2.3.1 LED Implementation  

LED is emerging as the most energy efficient technology for lighting applications.  Most 

of the existing applications focus on replacing existing street lighting units with more energy 
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efficient LEDs.   Examples include roadway lighting in Philadelphia, walkway lighting in New 

York City, roadway lighting on Golden Gate Bridge, and roadway lighting in Portland, OR (DOE 

2012 and 2013).  Findings from these projects indicate that the potential for energy savings of 

energy efficient LED-based systems is as much as 50% compared with that of the traditional high 

pressure sodium (HPS) lamps.  One interesting feature of LEDs is the ability to reduce their 

illumination level based on the ambient conditions and needs.  As a result, some of the LED 

demonstration projects explored dimmable features of LEDs with occupancy sensors, mainly for 

parking garages.  At present, LED lighting systems have become more commonly accepted and 

selected municipalities have already upgraded their street lighting systems to LED.  

The systems are designed such that the LEDs are activated after sunset and their intensity 

is reduced using dimmable feature to save energy costs.  A sensor network can be installed to 

monitor pedestrian activity, so that traffic activates the LEDs to their full intensity.  As an example, 

a LED lighting system was implemented to replace 8 existing HPS luminaires in a lighting system 

at the US Navy Research Center in Maryland (Pipattanasomporn et al. 2014).  Figure 5-3 shows 

the locations of light poles, traffic sensors, and the building.  Table 5-6  shows the components 

used for this implementation, number of units, and the installation locations.  Results indicated a 

significant reduction in energy usage with about 74% electricity savings after the implementation 

of LED luminaires instead of HPS luminaires.  The annual electricity savings due to LED when 

compared to HPS is 11,060 kWh.  This resulted in 7294 kg of lower CO2 than their HPS 

counterparts.  This data demonstrates that the implementation of state-of-the-art technology into 

existing pedestrian systems can make the systems more efficient and user-friendly. 

Table 5-6.  Technology Components and Installation Locations (Pipattanasomporn et al. 2014) 

Technology component No. of Units Installation Locations 

LED light fixtures 8 On top of eight light poles to replace existing HPS luminaires 

Streetlight controllers 8 At the base of each light pole 

Traffic sensors 

4 One at the 1st light pole 

One at the 8th light pole  

One at each of the two entrances of Building A 

Smart server 1 Inside Building A 
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Figure 5-3.  Light poles and traffic sensor arrangement (Pipattanasomporn et al. 2014) 

5.2.3.2 Implementation Cost Comparison – City of Ann Arbor  

The city of Ann Arbor was one of the first few cities to replace existing street and 

pedestrian lights with LEDs.  In addition to the total cost savings, LED implementation received a 

positive response on the performance.  Less light trespass has been observed and the blue/white 

light was easy on the eyes.  The globe fixtures used in this project are 10 ft tall and consisted of 

four panels that faced down toward the street.  Each fixture draws 56 watts with an expected life 

span of 10 years making them cost effective when compared with the previous HPS of 120 watts 

and 2-year life span.  Even though LED purchasing cost is significantly higher than the HPS 

systems, significance in savings during service life is more than enough to justify higher 

installation costs.  Further, due to extended service life, LED luminaires do not require the 

maintenance hours needed for HPS systems; thus, maintenance costs are significantly reduced.  

Table 5-7 and Table 5-8 provide a cost comparison.  Accordingly, replacing one light with LED 

saves $1,111 during a 10-year period.  It is estimated that the city of Ann Arbor implementation 

payback period to be 3.3 years (Relume 2011).  Other technologies such as motion sensors and 

dimmable features can be integrated to yield additional benefits.   

  



Infrastructure and Technology for Sustainable Livable Cities 

76 

Table 5-7.  Total Cost for Using Existing Luminaires for Next 10 Years (Relume 2011) 

Description Number Unit Cost ($) Total Cost ($) 

Replacement cost of luminaire with 2-year 

service life 

5 35 
175 

Labor and equipment for replacement 5 268 1,341 

Ballast (10 yr. life) 1 59 59 

Igniter (10 yr. life) 1 35 35 

Energy cost (4,380 kWh)   325 

Total Cost $1,935 

 

Table 5-8.  Total Cost for Using LED Luminaire for Next 10 Years (Relume 2011) 

Description Number Unit Cost ($) Total Cost ($) 

Replacement cost of LED with 10-year 

service life 
1 400 400 

Labor and equipment for replacement 1 268 268 

Energy cost (2,100 kWh)   156 

Total cost $824 

5.2.4 Summary and Conclusions 

Pedestrians must be able to safely navigate through streets and walkways.  Current trend is 

to use LEDs to illuminate streets and walkways.  Even though the implementation cost is high, 

data has shown a potential for achieving about 50% cost reduction when LEDs with 10-year 

service life are installed instead of HPS with 2-year service life.  Further, publish data indicate a 

potential payoff of the implementation cost in about 4 years.  LED technology is new and a lot of 

municipalities and cities are considering adopting the technology.  However, being a new 

technology field performance of LEDs needs to be monitored to collect adequate data to justify 

future implementations.  DIALux is a software commonly used for lighting design.  As a 

feasibility study, this software can be used to evaluate suitable luminaire types and configurations 

for implementation.  There are a large number of parameters that need to be considered for 

selecting and implementing a lighting system.  Hence, getting the service of lighting professionals 

is advised.  

5.3 PLANNING TOOLS FOR LOCATING WIND AND SOLAR SYSTEM 

Solar and wind are two environment-friendly natural resources that can be used to generate 

electrical power to operate bike-share kiosk, pedestrian lighting, etc.  Solar panels are commonly 

used to power bike-share kiosks (Fogelberg 2014).  Two such examples are discussed in section 
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2.7.1 and 2.7.2 of this report.  During this study, bike-share programs in two Michigan cities (Ann 

Arbor and Battle Creek) were reviewed and the successes and lessons learned were documented.  

Solar powered kiosks are used in both cities (Figure 5-4).   

 
(a) A bike-share station in Ann Arbor 

(Source: semichiganstartup 2016) 

 
(b) A bike-share station in Battle Creek 

(Source: Lewis 2013) 

Figure 5-4.  Solar powered bike-share stations 

One of the major challenges with solar powered kiosks is the maintenance of a reliable 

power supply.  As reported in section 2.7.2, batteries needed to be replaced to maintain system 

power.  This is primarily due to poor planning and design.  Use of average solar insolation data for 

planning purposes is not adequate.  Spatial distribution needs to be carefully analyzed for an area 

to identify suitable locations for solar infrastructure.  Also, the entire solar power system design 

needs to be carefully analyzed for the need.  

5.3.1 Solar Power System 

A typical power system includes a solar array, a charge controller, and a battery bank.  

Solar arrays or photovoltaic (PV) systems are devices that use sunlight to generate electricity 

(Ramchandra and Boucar 2011).  Sunlight provides energy in the form of radiation.  The amount 

of solar irradiance directly corresponds to the amount of energy that can be produced from a solar 

panel, and is the single largest factor effecting the production of electricity.  Solar irradiance is the 

term used to denote the amount of solar radiation that reaches a surface or an area over a certain 

period of time, and it is often expressed in units of Langley (Ly) or kilowatts per square meter per 

day (kW/m2/day).  Due to the extreme importance of solar insolation in the production of reliable 

power, it is important to determine the solar insolation instead of the number of sunshine hours.  

This is because the sunshine hours provide only the number of hours that sunlight is available at a 
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site, but not the intensity of sunlight (Shirahata et al. 2014).  Solar insolation data can be obtained 

from the Atmospheric Science Data Center at the NASA Langley Research Center (NASA 2014).   

In addition to solar insolation, exposure conditions and type of solar photovoltaic affect the 

solar power system performance.  Cloud cover, temperature, humidity, wind, and dust affect the 

production of solar power from a panel.  Cloud cover affects energy production by way of reducing 

the amount of solar irradiance that comes into contact with the panel.  Similarly, dust particles and 

shadows from nearby structures or trees can have a large impact on the electricity generation.  

Higher temperature also reduces the amount of energy being produced by a solar panel.  In 

addition, humidity levels in excess of 75% can lead to a decrease in solar panel efficiency (Ettah 

et al. 2012; Kazem et al. 2012).  Kazem et al. (2012) studied the effect of humidity on the 

performance of three types of solar photovoltaic: Monocrystalline, Polycrystalline and Amorphous 

silicon. Results show that the reduction in relative humidity increases the voltage, current and 

efficiency.  Further, the Monocrystalline panel has the highest efficiency when relative humidity 

is decreased with respect to other technologies. 

An advanced charge controller can manage the entire solar power system.  It has the ability 

to manage the power to equipment, and to protect the battery bank from overcharging and over-

discharging and the solar array from reverse current (Hee and Isa 2009).  Where needed, inverters 

can be used to convert direct current (DC) power into alternating current (AC) power.  However, 

additional losses due to an inverter need to be considered when sizing the solar array and the 

storage.  Certain charge controllers have load control options for the purpose of setting up timers 

as well as advanced programming to improve charging efficiency.  One such example is the 

Maximum Power Point Tracking (MPPT) charge controller.  The MPPT charge controller uses 

DC to DC conversion to convert the array’s operational voltage to the battery charging voltage. 

The conversion works on the principle that power into the MPPT is equal to the power out of the 

MPPT (i.e. Volts In × Amps In = Volts Out × Amps Out).  The efficiency of the power conversion 

ranges from 92% to 95% (Sunsaver 2014).  With the power conversion algorithm used in the 

MPPT controller, the charge (amperage) supplied to the battery can be increased by about 10% to 

35% (Sunsaver 2014).  The advantage of using an MPPT charge controller is that it allows the 

solar array to operate at its maximum power point voltage (Vmp); whereas, a typical charge 

controller supplies a charge to the battery in proportion to the power produced by the array. 
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The battery provides needed energy storage.  Deep discharge lead-acid batteries are good 

for storing solar energy that can later be delivered with minimal damage to the battery cells.  

Battery storage or capacity is often expressed in amp-hours.  The capacity stated on the battery is 

the total amount of energy that can be withdrawn from the battery before complete discharge.  

However, the total capacity of a battery can be affected by the rate of discharge and operating 

environment conditions (e.g., battery capacity drops to about 60% under below freezing 

temperatures).  This effect on the battery’s capacity can be determined by using Peukert’s equation 

or through C-rate tables available on most battery datasheets from the manufacturer of the battery. 

Inefficiency also exists in the process of discharging and recharging a battery; for a typical lead-

acid battery, this loss can be in the range of 10%-30% (Shirahata et al. 2014).  Batteries have a 

cycle life, or an estimated number of times that they can be discharged and recharged before the 

battery begins to lose its ability to maintain a charge.  A cycle is the period over which the battery 

is discharged and recharged once; thus in a solar system a cycle would occur every day.  The depth 

of discharge (DoD) is a term that refers to the amount of energy discharged from a battery, before 

it begins a new cycle.  The DoD can affect the life of a battery, the majority of battery 

manufacturers recommend not exceeding 50%-60% discharge.   

When a solar power system is installed without proper evaluation of site conditions and the 

solar power system (array, controller, battery bank, and the load), assuring a reliable performance 

is a challenge.  Also, a routine inspection plan and an inventory are needed for managing such 

infrastructure to assure system reliability. 

5.3.2 Wind-Solar Hybrid System 

In order to overcome solar powered system limitations, wind-solar hybrid systems are 

developed and used to power LED street lighting systems (Yildiz 2014).  Figure 5-5 depicts the 

components of a wind-solar hybrid street light system.  It consists of a solar panel, a small wind 

turbine, deep cycle batteries, a controller, and a street light (HYE 2015).  A few examples or 

concepts of such a hybrid system are shown in Figure 5-6.  A properly designed system for a 

specific site could be very effective to operate pedestrian lighting and similar low powered 

infrastructure by harvesting energy during day time (through sun light and wind) and night time 

(through wind) of a day (Selvam 2014).  Also, power can be generated throughout the year 

(including winter and summer seasons).  However, a challenge in operating such small wind 
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turbines during winter is the potential for ice build-up that requires adequate wind power to break 

the ice and get the turbine operated.  Further, depending on the size of the wind turbine, hazardous 

conditions might arise due to ice buildup.  Above all, a reliable system design and implementation 

require analysis of local level wind flow patterns and solar insolation within the physical urban 

landscape.  Other challenges include the cost of a system and requiring a trained crew for 

inspection and maintenance (Quing 2014).  

 

Figure 5-5.  Components of a wind-solar hybrid street lighting system (GHY 2015) 

 

  

Figure 5-6.  Wind-solar hybrid street lighting systems (Source: Sunning 2015) 

To demonstrate advantages of combining solar and wind sources to generate power in 

winter cities, variation of solar insolation and wind speed and direction are discussed using City 

of Kalamazoo, Michigan, as an example.  The average solar insolation variation for Kalamazoo 

City represents a bell shaped curve with the highest and lowest values documented during summer 

and winter seasons, respectively (solarenergylocal 2016) (Figure 5-7).  The solar insolation ranges 

from 2 to 6 kWh/m2/day.  Figure 5-8 shows average wind speed variation across City of 
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Kalamazoo.  As shown in the figure, maximum wind speed is observed during winter months.  

During summer months, there are periods with almost no winds.  Data shown in Figure 5-7 and 

Figure 5-8, demonstrate the feasibility of combining wind and solar resources to generate power 

throughout the year.  Figure 5-9 and Figure 5-10 show wind direction variation.  Dominant wind 

directions are South (S), Southwest (SW), West (W), and Northwest (NW).  For an effective 

implementation, local site conditions as well as potential of freezing need to be considered.  

Section 5.3.3 describe models available for solar radiation analysis with shadowing effects.  

Section 5.3.4 describes models available to analyze wind pattern around structures and other 

obstacles.  The models described in these sections can be used to evaluate sites for optimal 

locations for implementing wind, solar, or hybrid power systems. 

 

Figure 5-7.  Average solar insolation for Kalamazoo City (Source: solarenergylocal 2016) 

 

 

Figure 5-8.  Average wind speed across Kalamazoo City (Source: WeatherSpark Beta 2016) 
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Figure 5-9.  Direction of wind across Kalamazoo City (Source: WeatherSpark Beta 2016) 

 

Figure 5-10.  Direction of wind across Kalamazoo City (Source: WeatherSpark Beta 2016) 

5.3.3 Impact of Shadows and Solar Radiation Analysis 

5.3.3.1 Impact of Shadows 

Locations for implementing sunlight sensitive infrastructure needs to be identified 

carefully by analyzing the effect of shadows casted by neighboring buildings and other obstacles.  

As an example CEQR (2014) describes the work performed for evaluating the impact of shadows 

casted by a proposed 303 ft tall building in New York City on sunlight sensitive infrastructure.  

Four particular days representing different seasons (summer and winter) were analyzed.  March 

21 was selected to represent variation of shadows from vernal equinox.  June 21 was selected as 

summer solstice (to mark the onset of summer and the day with the longest day time).  The period 

from May 6 to August 6 was selected to represent summer.  December 21 was selected as winter 

solstice (the day with the longest night).  
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Two green color boxes shown in Figure 5-11 represent sunlight sensitive infrastructure.  

As shown in the figure, shadow of the proposed building covers the sunlight sensitive 

infrastructure located on northeast side right after the 2:30 pm and remains at least partly covered 

even after 4:30 pm on March 21.  During the period of May 6 to August 6, the shadow had very 

little effect on the infrastructure (Figure 5-12).  On June 21, there was no impact on any of the 

sunlight sensitive infrastructure (Figure 5-13).  Representing winter season, analysis was 

performed on December 21.  Results show that the infrastructure located on northwest side 

impacted for about an hour in the morning while the infrastructure on northeast had no impact due 

to shadows (Figure 5-14).      

 

Figure 5-11.  Shadow effect on March 21 (Source: CEQR 2014) 

 



Infrastructure and Technology for Sustainable Livable Cities 

84 

 

Figure 5-12.  Shadow effect for the period of May 6 to August 6 (Source: CEQR 2014) 

 

 

Figure 5-13.  Shadow effect on June 21(Source: CEQR 2014) 

 

. 
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Figure 5-14.  Shadow effect on December 21 (Source: CEQR 2014) 

Shadow length (s) can be calculated in terms of object height (h) and solar elevation angle 

() as shown in Figure 5-15 and Eq. 6. 

 

s=h/Tan (α)        (6) 

 

 

Figure 5-15.  Definition of shadow length (Source: PVeducation 2016) 

Solar elevation angle (α) is a function of the latitude of the location of interest (φ), solar 

declination angle (δ), and the hour angle (HA) as shown in Eq. (7).  Solar declination angle is 

calculated using Eq. 8 as a function of the day number (n) where n=1 represents January 1st. 

𝛼 = sin−1[sin 𝛿 sin 𝜑 + cos 𝛿 cos 𝜑(𝐻𝐴)]    (7) 
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𝛿 = 23.45
𝜋

180 
sin[2𝜋(

284+𝑛

36.25
)]     (8) 

 

The hour angle (HA) is the azimuth angle of the sun’s rays which is caused by the rotation 

of earth (Holbert 2007) and calculated using Eq. 9.  The apparent solar time (AST) needed for Eq. 

9 is calculated using Eq. 10.   

HA =
(No.of minutes past midnight,AST)−720 mins

4 min/deg
    (9)  

 

AST = 𝐿𝑆𝑇 + (
4𝑚𝑖𝑛

𝑑𝑒𝑔
) (𝐿𝑆𝑇𝑀 − 𝐿𝑜𝑛𝑔) + 𝐸𝑇     (10) 

where, 

LST= Local Standard Time or clock time for that time zone (may need to adjust for 

daylight savings time, DST, that is LST=DST-1 hr) 

Long= local longitude at the position of interest 

LSTM= local longitude of standard time meridian and calculated using Eq. 11. 

ET= equation of time in minutes and calculated using Eq. 12. 

LSTM = 15° × (
𝐿𝑜𝑛𝑔

15°
)                            (11) 

ET = 9.87 𝐬𝐢𝐧(2𝐷) − 7.53 𝐜𝐨𝐬 𝐷 − 1.5 𝐬𝐢𝐧 𝐷    (12) 

Where, 𝐷 = 360° ×
(𝑁−81)

365
                                (13) 

Using the above equations and acquiring necessary parameters (hour angle, solar 

declination angle, and latitude of interest) the solar elevation angle and be calculated.  After that, 

the shadow length can be calculated to evaluate the impact of shadows from neighboring structures 

or other obstacles on the planned solar sensitive infrastructure.  

5.3.3.2 Solar Radiation Analysis 

Various solar radiation analysis models (e.g. r.sun, Solar Analyst, SolarFlux, SRAD, and 

Solei-32), the methodology implemented in such models, and input and output parameters are 

discussed.  The scope and limitations of different models are also described and compared briefly 

at the end of this section.  Most of the models are operated by external working environments 

incorporated with ArcGIS.  These models are capable of calculating overall solar irradiance on the 

surface with different shadowing effects due to surrounding infrastructure.   
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The r.sun is an updated solar radiation model that can be integrated with open source 

environment of GRASS GIS.  Suri and Hofierka (2004) demonstrated the use of this model by 

implementing it to develop a solar radiation model for some parts of Eastern and Central Europe.  

The r.sun model can perform analysis under clear-sky and overcast conditions.  All of the variables 

of the data model can be represented in raster format and therefore the r.sun model is easily 

compatible with large scale terrain analysis models.  The model can run with two operational 

modes (clear sky and overcast condition) with temporal variation.  

Hofierka and Zlocha (2012) conducted a study to build a sample 3-D city model by 

applying a new 3-D version of r.sun solar radiation model.  The study included the vertical surfaces 

for analyzing the effect of solar radiation in addition to 2-D surfaces like terrain and rooftops.  The 

new 3-D solar radiation model was included with the 3-D vector data that represents the complex 

environment of overall surfaces by following vector‐voxel approach.  A unique shadowing 

algorithm was incorporated in the data model for measuring the effect of shadowing on 

surrounding structures.  The model showed the spatial and temporal variation of solar radiation 

effects on the complex 3-D urban area (Figure 5-16).  

 
(a) Monthly solar irradiation for January 

 
(b) Monthly solar irradiation for July 

Figure 5-16.  Temporal variation of solar radiation (Source: Hofierka and Zlocha 2012) 

Solar Analyst is a data model that is run by ArcGIS for analyzing solar radiation in a 

landscape or specific location.  The model can be performed by two methods based on area or 

point solar radiation analysis across an entire landscape.  Three maps are being used to complete 

the solar radiation analysis process (Fu and Rich 2000).  They are graphic representations of the 

visible sky (view-shed map), the sun's position in the sky across a period of time (sun-map), and 

the sectors of the sky that influence the amount of incoming solar radiation (sky-map) (ESRI nd).  

Four steps are used in processing solar radiation map for a specific area or point location by Solar 
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Analyst model.  The first step is to calculate an upward-looking hemispherical view-shed on 

topography.  Then the direct and diffuse radiation is estimated by overlaying of view-shed on a 

direct sun map and sky map respectively.  At last, an insolation map is being produced by repeating 

the process for every location or point of interest.  

Hetrick et al. (1993) developed a GIS-based SolarFlux model which is written in Arc 

Macro Language (AML) and incorporated with the programming environment of ARC/INFO 

interpreter.  The SolarFlux model was used to analyze the solar radiation on the Big Creek Reserve 

in California and La Amistad Biosphere Reserve in Costa Rica based on surface orientation, solar 

angle, shadowing due to topographic features, and atmospheric attenuation.  The input data for the 

model is based on raster grid cell.  The specific latitude and longitude with time interval data is 

required for the model.  A UNIX workstation (SUN SPARCstation 2) incorporated with GIS 

software is needed to run the model.  The model has four categories of modules (interface, 

conversion, solar position, and numerical integration).  The interface module configures the form 

menu with necessary data for the users.  The acceptable format of data is checked in with the 

conversion module.  The sun angle with azimuth and zenith angles are calculated in solar position 

module.  Direct, diffuse, and reflected solar radiation is calculated using the numerical integration 

module.  

The SRAD solar radiation model can be integrated with ArcGIS (Ruiz-Arias et al. 2009). 

Recently, the model was incorporated into ArcGIS9.x geo processing framework on windows 

platform.  The SRAD model was designed for measuring both the short-wave and long-wave of 

solar energy in a particular area or place.  Solar radiation calculation of large areas is limited 

through this model.  The overall process is performed with four steps within the calculation of 

solar radiation.  The horizontal extraterrestrial irradiance is computed as the first step of short-

wave radiation calculation.  After that, the value is obtained for the instantaneous short-wave 

fluxes for clear-sky.  The total fluxes are then integrated to obtain daily total irradiance and 

adjusted to reduce the effect for cloudiness.  As the final step, the average daily value is obtained 

for a specific period and a specified area.  

Miklanek and Meszaros (1993) developed the Solei-32 solar radiation model for a DOS 

environment and integrated with GIS IDRISI.  The model is usually operated with a Digital 

Elevation Model (DEM) enabled raster grid cell on ArcGIS.  The Solei-32 model computes the 

temporal topographic attributes and sunshine duration for every grid cell of a land cover surface.  
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Direct, diffuse, and reflected irradiance is then measured to calculate the total solar irradiance for 

a specific time period.  

Different tools or software that is used to perform solar radiation analysis are shown in 

Table 5-9.  Table 5-10 shows general input/output parameters related to all the models stated in 

Table 5-9, data formats, and units of measurements.  Specific data needed for the models are listed 

in Table 5-11 and Table 5-12. 

Table 5-9.  Solar Radiation Models and Associated Tools or Software 

Solar radiation model Tools/software 

r.sun  GRASS GIS 

Solar Analyst  ArcGIS Spatial Analyst extension 

SolarFlux  UNIX workstation (SUN SPARCstation 2) incorporated with ArcGIS 

SRAD ArcGIS9.x geo-processing framework 

Solei-32  GIS IDRISI  

 

Table 5-10.  Common Input and Output Parameters for the Solar Radiation Models 

Input data 

Data Type Unit 

Surface grid cell Raster  Lengths  

Elevation Raster  Lengths  

Aspect Raster  Decimal  degrees 

Slope Raster  Decimal  degree 

Site latitude Raster  Decimal  degrees 

Time interval Single  value  Decimal  hours 

Atmospheric data Single  value Dimensionless  

Output data 

Total insulation  Raster  W/m2 

Horizon shadowing Single value Dimensionless  

Source: Suri and Hofierka 2004; Hofierka and Zlocha 2012; Fu and Rich 2000; ESRI nd; Hetrick et al.1993; Ruiz-

Arias et al. 2009; Miklanek and Meszaros 1993. 
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Table 5-11.  Specific Data Required for r.sun Model to Perform Solar Radiation Analysis 

Model Input data 

r.sun 

Data Type  Unit  

Atmospheric Turbidity Raster  Dimensionless  

Ground Albedo Raster  Dimensionless  

Clear-sky index for beam component Raster  Dimensionless  

Clear-sky index for diffuse component Raster  Dimensionless  

Day number Single value Dimensionless  

Solar declination Single value  Radians  

Output data 

Solar incidence angle Raster  Decimal  degrees 

Beam irradiance Raster  W/m2 

Diffuse irradiance Raster  W/m2 

Ground reflected irradiance Raster  W/m2 

Duration of the beam irradiation Raster  Min. 

Source: Suri and Hofierka 2004; Hofierka and Zlocha 2012 

Table 5-12.  Specific Data Required for Solar Analyst, SolarFlux, SRAD, and Solei-32 Models 

Analysis Models Data Type Unit 

Solar Analyst 

Input data 

Daily and seasonal shifts of the 

sun angle 

Raster  Decimal  degrees 

Output data 

Global irradiance Raster  W/m2 

Direct irradiance Raster  W/m2 

Diffuse irradiance Raster  W/m2 

SolarFlux 

Input data 

Time increment Single value Hours  

Local time meridian Single value Dimensionless  

Atmospheric transmittance Single value Dimensionless  

Reflectance coefficient Raster  Dimensionless  

Output data 

Shadowing of different complex 

structures 

Single value Dimensionless  

SRAD 

Input data 

Albedo  Raster  Dimensionless 

Sunshine hours Single value Hours 

Cloudiness parameter Raster Dimensionless 

Atmospheric transmittance Raster Dimensionless 

Circumsolar coefficient Raster Dimensionless 

Output data 

Surface and air temperature Single value Decimal degrees 

Solei-32 

Input data 

Ground albedo Raster  Dimensionless  

Meteorological data 

(temperature, wind) 

Single value Different dimensions  

Linke turbidity coefficient Raster  Dimensionless  

Relative sunshine Single value Hours  

Output data 

Insolation duration Raster  Minutes 

Sunrise time Single value Decimal hours 

Source: Fu and Rich 2000; ESRI nd; Hetrick et al.1993; Ruiz-Arias et al. 2009; Miklanek and Meszaros 1993 
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Solar Analyst, SolarFlux, SRAD, and Solei-32 models are mainly used for analysis on 2-D 

surfaces.  The r,sun model has already been used to demonstrate solar radiation effects in 3-D city 

models.  The r.sun, Solar Analyst, SRAD, and Solei-32 models are used in large scale analysis.  

Since it is the earlier version of solar model for solar radiation analysis in ArcGIS, SolarFlux 

model is limited to use in smaller scale analysis.  Yet, the shadowing effect of different complex 

structures can be explained better with this SolarFlux model.  Solar Analyst model is good to show 

detail map of different view shed (e.g. buildings, trees etc.), but it is not capable of showing 

complex shadowing effects on complex infrastructure.  When analysis capabilities of available 

models are compared, the r.sun model is an advancement to the other models.  

5.3.4 Wind Power Technology and Wind Pattern Analysis Models 

Kinetic energy of wind developed due to a given configuration of a wind turbine is 

expressed in Eq. 9.   

Kinetic energy of wind = ½  AV3      (9) 

Where,  is air density, A is swept area, and V is wind velocity.  The swept areas is a 

function of the turbine configuration and typically it is the area of a circle defined by the rotor 

radius. 

Figure 5-17 shows wind pressure distribution around a structure.  As shown in the figure, 

turbulent and vacuum areas are developed around the structure.  When an isolated structure is 

considered, it is easy to identify locations that are not favorable to locate a wind turbine.  The 

situation becomes very complex as wind flows through complex arrangement of urban 

infrastructure.  Nelson and Brown (2013) showed an example of wind flow pattern and wind speed 

variation in Lower Manhattan by using QUIC-URB wind solver (Figure 5-18 ).   

 

Figure 5-17.  Wind pressure distribution around a structure (Source: WindEnergy nd.) 
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Figure 5-18.  Wind flow pattern for Lower Manhattan (Source: Nelson and Brown 2013) 

 

Various real-time simulation programs are used to develop wind patterns in different urban 

scales.  Computational Fluid Dynamic (CFD) models have provided satisfactory results to 

understand wind flow patterns around individual or clusters of urban structures (Gowardhan et al. 

2010).  In this section, different CFD enabled wind pattern models (e.g. Empirical-diagnostic wind 

Model, RANS computational fluid dynamics model, LES computational fluid dynamics model, and 

CFD Enabled Wind model) are described with respect to methodology and input and output 

parameters.  In addition, Wind Flow Model available in WinPRO software is also discussed.  The 

large scale terrain analysis with energy calculations and different wind maps could be obtained by 

using Wind Flow Models.   

Empirical-diagnostic wind Model is a fast response wind pattern model to compute the 

surrounding flow fields of 3-D urban structures.  Nelson and Brown (2013) describe the wind flow 

patterns developed in the Lower Manhattan area.  Detailed building dimensions (height, width, 

and length) and spacing between buildings were considered in the analysis.  

Gowardhan et al. (2010) conducted a study to improve the wind-flow runtime by enhancing 

RANS computational fluid dynamics model.  The performance of the model was evaluated using 

wind measurements from the Joint Urban 2003 Oklahoma City field experiment (Figure 5-19). 

The model was developed by solving 3D Reynolds-Averaged Navier-Stokes (RANS) equations. 
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A night time intensive operation period (IOPs) was used to conduct the study.  The resulting effect 

by RANS computational fluid dynamics model was very satisfactory and it was overlaid with the 

field measurements.  The model predicted the channeling effect between the urban structures and 

was able to produce optimum velocity around the structures.  The reverse flow was calculated for 

the street canyons and wake regions.  The model also overlaid with field measurements for the 

intersection areas included in the study.  

 

Figure 5-19.  Wind flow pattern in Oklahoma City (Source: Gowardan et al. 2010) 

 

Neophytou et al. (2010) enhanced Large eddy simulation (LES) computational fluid 

dynamics model with spatial filtering option to analyze large and small scale wind patterns.  The 

LES computational fluid dynamics model explicitly expressed the large air turbulence in addition 

to complex small scale wind flow patterns between the urban structures.  The wind model produces 

the resolved and sub-grid parts of wind pattern for large turbulence and smaller eddies respectively.  

A computational fluid dynamics (CFD) Enabled Wind model is developed for the San 

Francisco area to show variability of the complex wind resources around the city (San Francisco 

Energy Map 2016).  Complex urban 3-D structures were considered in the model and building 

height was considered as the tallest connected structure for the model.  Besides, low-rise buildings 

were considered as the surface roughness to simplify the wind model.  The wind model predicted 

the higher and lower wind energy potential throughout the bay area and the downtown San 

Francisco.  About eight wind directions were analyzed for the resultant wind flow patterns with a 

constant wind speed of 10 mph.  Northwest and Southeast areas of San Francisco were predicted 

as upwind and downwind by the data model due to the nature of topography (Figure 5-20).  
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Figure 5-20.  Wind flow in San Francisco City (Source: San Francisco Energy Map 2016) 

 

Acker and Chime (2011) analyzed wind follow patterns in Flagstaff, Northern Arizona, to 

understand wind flow pattern and speed to calculate energy distribution to identify locations and 

heights for wind turbines.  WindPRO software was used for this purpose and WAsP module was 

used to perform detail terrain analysis for the surrounding area.  Detailed energy calculations with 

predicted wind flow patterns were obtained as the output of the model.  Necessary wind resource 

maps were produced at different vertical layers with 33 ft and 100 ft (10 and 30 m) height for the 

study area. 

Table 5-13 lists wind pattern analysis models documented in literature and the software 

that has integrated in these models. 

Table 5-13.  Wind Pattern Analysis Models and Associate Software 

Wind pattern analysis models Software 

Empirical-diagnostic wind Model QUIC-URB wind solver 

 

Reynolds- 

Averaged  Navier-Stokes (RANS) computational fluid dynamics model 

QUIC-CFD wind solver 

LES computational fluid dynamics model Large eddy simulation (LES) solver 

CFD Enabled Wind model ANSYS Fluent 

Wind Flow Model WindPRO with WAsP module 

 

General input and output parameters of wind pattern models are shown in Table 5-14.  
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Table 5-14.  Common Input and Output Parameters for the Wind Pattern Models 

Data Type Unit 

Input data 

XY Coordinates Single Value Decimal Degrees 

Wind Speed Single Value mph  

Wind Direction Single Value Decimal Angles 

Surface Roughness Data Raster  Dimensionless  

Height Contour Data Raster Meters 

Output data 

Energy Calculations Single Value W/m² 

Wind Flow Calculations Single Value mph 

Wind Flow Predictions Single Value mph 

Wind Resource Maps Single Value Dimensionless 

Source: Nelson and Brown 2013; Gowardhan et al. 2010; Neophytou et al. 2010; San Francisco Energy Map 2016; 

Acker and Chime 2011  

 

The software/program specific data required for Empirical-diagnostic wind Model, RANS 

computational fluid dynamics model, and CFD Enabled Wind model are given in Table 5-15. 

Table 5-15.  Model Specific Data Needs for Empirical-diagnostic wind Model, RANS computational fluid 

dynamics model, and CFD Enabled Wind model 

Model 
Data Type Unit 

Input data 

Empirical-diagnostic 

wind Model 

Reference Height for Upwind Single Value Meters 

Exponent for Inlet Profile Single Value Dimensionless  

Building Input Mode Single Value Dimensionless  

Number of Buildings Single Value Dimensionless  

Building Dimensions (Height, Width, etc.) Single Value Meters 

Output data 

Wind Flow surrounding the structures Single Value W/m2 

RANS computational 

fluid dynamics model 

Input data 

3-D Building Masks Raster Dimensionless 

Time Steps Single Value Min. 

CFD Enabled Wind 

model 

Input data 

Meteorological Data Single Value Dimensionless 

3-D Geometric Data Single Value Dimensionless 

Output data 

Higher and Lower energy potential Single Value W/m2 

Source: Pardyjak and Brown 2003, Nelson and Brown 2013; Gowardan et al. 2007; San Francisco Energy Map 

2016. 

 

Empirical-diagnostic wind Model is the fastest response flow model among other discussed 

models that computes wind flow around the complex structures.  Although RANS computational 
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fluid dynamics model is comparatively slower than Empirical-diagnostic wind Model, it produces 

a more realistic wind pattern.  Only LES computational fluid dynamics model is enhanced with 

analyzing for both small and large eddy wind flows among the other wind models.  All of the 

above models can discuss the wind flow between complex urban structures except the Wind Flow 

Model.  

5.4 SNOW-MELTING TECHNOLOGIES 

5.4.1 Overview 

Alternative to using deicing salts, various technologies are used to eliminate snow 

accumulation and ice build-up on pavements and walkways.  The methods that are used for this 

purpose can be broadly classified as electrical systems, hydronic systems, and infrared heaters.  

The primary benefits of using such technologies include extend life of walkway and pavement 

material, increased safety, reduced liability, etc.  Snow-melting systems are desired by businesses 

and residents alike because they discontinue the need for snow removal.  Typical systems 

incorporates temperature and humidity sensors to detect ambient air temperature and moisture.  

When the temperature and moisture meet the specific requirements, the system turns on and off 

automatically.  With automated systems, the snow removal process is simplified and operating 

costs are lowered.   

This section of the report explains each general method in detail, installation and 

maintenance costs, and challenges and lessons learned.  Hydronic systems used in downtown 

Kalamazoo and city of Holland are discussed here as two case studies.   

5.4.2 Electrical Systems 

5.4.2.1 Embedded System 

Electricity is used to heat up wires embedded in concrete or asphalt.  Surface is heated up 

due to heat transfer and melt snow.  This is known as a radiant heat method because the wires are 

radiating heat to melt snow.  These wires are about 1/8 - to ¼ - inch diameter.  The cables lay on 

top of an insulating later and are positioned closer to the surface of the poured asphalt or concrete.  

Both ends of the cable meet in an above-ground junction box to provide access to power supply.  

With a life expectancy of over 30 years, these systems have no moving parts and are maintenance 

free after initial installation.   
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Figure 5-21 shows basic components of an electrical snow melting system such as control 

panel, aerial mounted snow switch, junction box, in-pavement sensor, and heating cables. 

 

Figure 5-21.  Components of an electrical snow melting system (Source: Warmzone 2016) 

 

An electrical snow melting system must be installed carefully as errors will lead to costly 

repairs and liabilities.  Before installation, all the components needs to be checked and tested.  An 

insulation layer is placed above the base to minimize heat losses to ground.  Then, an appropriately 

sized rebar grid is placed above the insulating layer.  The wires need to be lifted above the 

insulating layer and placed two to three inches below the planned surface of the concrete or asphalt.  

Typically, these cables are tied to the rebar grid in a serpentine pattern throughout the snow melt 

area.  The concrete or asphalt will be poured after the electrical snow melting system is secured in 

the place.  The concrete slab of four to six inches thick is placed, with the cables in the middle or 
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slightly closer to the surface.  Frequent testing needs to be performed throughout the construction 

process to assure integrity of the system.   

Common practice today is to buy a kit that has electric wires prepared and ready for 

installation.  Figure 5-22 shows a SunTouch kit that can cover up to 64 square feet for $608.00 

(i.e., material cost of $9.50 per square foot).  Additional costs include sensors, control kits, paving 

material, and installation cost.  Without labor costs, estimated installation cost ranges from $11 to 

$16 per square foot depending on size and local conditions (Heatizon 2015b).       

 

Figure 5-22.  SunTouch ProMelt mat (Source: SunTouch 2016) 

 

5.4.2.2 Electrical Heat Mat (HeatTrak) 

HeatTrak is made from a durable rubber material that can withstand heavy foot traffic (only 

the industrial mats can be driven on).  The HeatTrak encompasses heating elements within the 

rubber to melt snow and ice.  This mat acts like a rug for outdoors to be placed and plugged in 

whenever convenient to melt snow away and clear a path.  It is capable of being left outside all 

winter long and has an average cost of about $1 a day depending on size of the mat and duration 

of operation.  The HeatTrak is capable of melting 2-inches of snow per hour and prevents ice 

buildup on entrances, walkways, handicap ramps, loading docks, stairs, etc., (Figure 5-23). 

These mats offer different methods for turning on and off.  The first method is to purchase 

one of the two automatic controllers available in the market.  The first controller costs $50 and 

plugs straight into the outlet.  The mat receives power when the sensor reads temperatures below 

38˚ F.  This controller will continually run once it is powered until temperature reaches 50˚ F or 

above.  The second automatic controller costs $350 and must be installed professionally (probably 

an additional cost).  The device only turns the mat on when it reads temperatures below 38˚ F and 

senses moisture in the air.   
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Figure 5-23.  Heat Trak leading to a hot tub (Source: Heatizon 2016) 

 

5.4.3 Hydronic Systems 

Hydronic snow melting systems use an ethylene glycol-water mixture (similar to 

antifreeze) that runs through a flexible polymer (PEX) tube to transfer heat.  A hydronic system 

requires an average of 100 to 150 BTU/hr/ft2 to melt snow at an efficient rate (RBA 2014).  The 

operational temperature of the mix ranges from 80 0F to 140 0F.  A typical system includes the 

following components:    

1) A boiler that uses electricity (from grid or any renewable source such as solar, 

geothermal, etc.), fossil fuel, or gas.  

2) Tubes to get glycol-water mixture flowing through the area to be covered. 

3) A pump to move the heated fluid through the tubing.   

4) A controlling system to automate the operation.   

5.4.3.1 Installation 

Installation of tubing must be performed carefully to avoid puncture.  An insulation layer 

is needed to prevent heat loss.  When installing a system in concrete, the PEX tubing is laid on top 

of the insulation.  The laid tubing needs to be secured in place approximately two to three inches 

from concrete surface by tying the tubes to reinforcement layer (Figure 5-24).  Figure 5-25 shows 

a typical cross-section with tubing and insulation. 
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Figure 5-24.  Arrangement of tubes, reinforcement, and an insulation (Source: RBA 2014) 

 

 

Figure 5-25.  Slab cross-section showing insulation layer and tubing (Source: RBA 2014) 

 

When installing a hydronic snow melt system under asphalt or pavers, the first layer is an 

insulation layer placed on top of the bare ground.  The tubes are connected to the insulation layer 

and encased within two to three inches of a compacted media.  Stone dust or fine sand is used.  

Crushed stone is not allowed because the sharp edges could damage the tubes.  When pavers are 

used, the pavers are placed on top of the compacted media and compacted normally.  If asphalt is 

used, it is poured as on top of the media and compacted while running cold water through the 

tubes.   

5.4.4 Infrared Heaters 

Infrared lamps are used to instantaneously radiate heat and melt snow.  They are typically 

mounted on a pole or a permanent fixture attached to a structure.  The infrared lamps provide 

flexibility in post-construction installation.  Retrofitting a lamp is quite simple compared to 

electrical and hydronic snow melting systems.  The infrared lamps are also capable of being 

automated with sensors.  These lamps are typically used at airplane hangars, locker rooms, open 

air restaurants, parking garage ramps, etc.  Figure 5-26 shows information available from 



Infrastructure and Technology for Sustainable Livable Cities 

101 

manufacturer data sheets.  As shown in the figure, it provides the mounting height, coverage area, 

and the heat density.  The first model listed in Figure 5-26  (SALPHA15120S, 1.5kW, 120V, Silver 

Heater) costs $368.00 (MEHA 2015b).  With a coverage area of 110 ft2, the heater cost is $3.35 

per square foot.  However, this does not include installation, maintenance, and operational costs.  

A typical system consists of the following: 

 Infrared lamps 

 Automatic controls sensor 

 Mounting components (chains, bracket, pole, etc.) 

 

 

Figure 5-26.  Coverage and heat density of a wall mounted lamp (Source: MEHA 2015a) 

5.4.4.1 Installation and Maintenance 

Figure 5-27 shows common mounting options.  Figure 5-28 and Figure 5-29 show 

implementations at a bus station and an ambulance parking space.  In addition to the overhead and 

wall mount, the infrared lamps can be mounted on poles.   
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After installation, there are automatic sensors that can used to turn the lamp(s) on and off.  

Typical lamps are rated for 5000 hours.  With an average snowfall duration of 150 hours per year, 

the bulbs can last 30+ years.  Maintenance is as easy as replacing a normal fluorescent light bulb. 

 

Figure 5-27.  Mounting options (Source: MEHA 2015a) 

 

 

Figure 5-28.  Infrared heaters implemented at a bus stop (Source: MEHA 2015a) 

 

 

Figure 5-29.  Infrared heaters implemented at a hospital (Source: MEHA 2015a) 
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5.4.5 Case-Study 

5.4.5.1 Kalamazoo, Michigan 

Kalamazoo has a hydronic snow melting system for their downtown mall area.  It has been 

completed in three separate phases.  Phase I started in 1998, and the third and last phase was 

completed in 2005.  Figure 5-30 outlines and highlights the segments of sidewalk and roads that 

are covered by the snowmelt system.  The diamond shape located at the lower left corner represents 

the location of the boiler room.  The room is located on a lower level of a parking garage and stores 

the pumps, heat transfer units, boilers, extra supplies, etc.  Just outside the boiler room is the 

concrete temperature reader.  The reader relays information to a computer operated system that 

controls the system operation and idle times.     

Sizable donations and general city funding helped get the snow melting project moving 

forward for Kalamazoo, with inspirations coming from Grand Rapids and Holland downtown.  The 

major benefit include no snow removal for the Kalamazoo Mall area and lower snow removal 

costs for the City.  Today, business owners, residents, and downtown mall area shoppers all benefit 

as there is no snow to walk through.  

 

Figure 5-30.  Kalamazoo mall snowmelt system coverage area 

Construction of Phase I began in 1998 and completed in 1999.  The project scope included 

setting up the boiler room as well as installation of the hydronic system to cover 74,500 ft2 of 

roadway and pavement area.  Phase I coverage is 70.4% of the planned square footage to be 
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covered during all three phases of the project.  Figure 5-31 outlines the area covered by the system 

during Phase I - a two block stretch located between East Lovell Street and East Michigan Avenue.   

 

 

Figure 5-31.  Kalamazoo mall stretch covered during Phase I implementation 

Phase II construction started in 2002 and completed in 2003.  This phase is a one block 

segment running from West Water Street to East Eleanor Street, representing the northern most 

segment of the Kalamazoo Mall.  Figure 5-32 shows the area covered during phase II construction.  

The total area covered is 12,100 ft2 (i.e., 11.4% of the entire area covered by the snowmelt system).    

 

 

Figure 5-32.  Area covered during Phase II construction 

Phase III construction started in 2004 and completed in 2005.  Figure 5-33 shows the area 

covered during this phase.  This segment wraps around the Radisson Plaza Hotel block and runs 

from East Michigan Avenue to West Water Street.  Phase III covers 19,249 ft2 (i.e., 18.2% of the 

entire area covered by the snowmelt system).  
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Figure 5-33.  Area covered during Phase III construction 

Kalamazoo mall installed their snowmelt system using concrete, a flowable fill, sand, and 

brick pavers.  The bottom most layer is a 6 in. thick concrete slab.  On top of the concrete slab lays 

a 2 in. thick layer of flowable fill with the tubing embedded in the middle.  Above the flowable fill 

is a one-inch layer of sand.  The brick pavers are placed on top of the sand.  Figure 5-34 is a typical 

cross section of the north end of the Kalamazoo Mall set up in the same manner as described above.  

Figure 5-35 shows the tubing coming out of the concrete slab and into the flowable fill layer.  The 

tubing is coming from the snowmelt manifold.  The concrete slab is boxed out for the tubes to 

enter the snowmelt surface area from the manifold.    

 

Figure 5-34.  A cross-section showing material layers and tube layout 
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Figure 5-35.  Tubes running through a concrete slab 

 

Funding for the snow melt system in Kalamazoo provided from general funding, private 

donations, downtown development authority (DDA) contributions, and tax assessments for the 

buildings that directly benefit from the snow melt system.  The first two phases of this project cost 

was $9,388,000, with an average cost of $108.41 per square foot.  This includes the entire set up 

of the boiler room and encompasses 82% of the entire square footage of the system.  Donations 

from a number of private contributors totaled over $5.5 million for the project from 1996 to 2002.  

General funding totaled $3 million.  DDA contributions totaled $1.2 million.  This left $448,000 

in cumulative cash flow for expansion.   

Each year, the city is able to tax building owners who own property that is adjacent to the 

snow melt system.  Building owners pay $15.164 per linear foot (based on the length of a store 

front), for a total of $43,979.04.  These funds are used for general maintenance of the Kalamazoo 

Mall and the snow melt system that resides within it.  The combined annual cost for maintenance 

and operation of the snow melt system ranges from $160,000 to $200,000 (depending on 

malfunctions and severity of winters).   

The snow melting system covers a total area of 105,849 ft2.  It circulates 19,000 gallons of 

a glycol-water mixture through 228,267 feet of pipe requiring 14.17 million BTUs to properly 

operate the system.  The mixture of 40% glycol and 60% water is pumped through a filter, two 

boilers, two heat exchangers, and then out to the street.  The mixture being pumped out to the 

streets leaves the boiler room at approximately 104˚F and 60 psi and return at 32 psi.  The pumps 

flow 1588 gallons of glycol-mixture per minute during operation.  The system is operated 

automatically and on/off function is controlled based on temperature measured at the pavement.  

Table 5-16 presents the area covered, length of pipes used, and the energy consumption for each 

phase and the total system.  
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Table 5-16.  The Area Covered, Length of Pipes, and the Energy Consumption 

Phase Area (ft2) Pipe (ft.) 
Energy 

(million BTUs) 

I 74,500 154,420 9.56 

II 12,100 27,865 1.77 

III 19,249 45,982 2.84 

TOTAL 105,849 228,267 14.17 

 

The most common cause of pipe damages is due to construction activities in the area 

because the contractors do not contact the city before starting the work.  System leaks are usually 

discovered either by observing liquid at the surface or due to pressure drop in the system.  

Detecting leaks by observing liquid at the surface is not an effective method because the damage 

may not always be located directly below the liquid patch.  When a leak is located under brick 

pavers, the liquid usually rises directly to the surface making it much easier to locate the damage.  

Fixing leaks under brick pavers is easy compared to concrete or asphalt surfaces.  When liquid is 

not observed on the surface or the damage is harder to locate (due to concrete or asphalt), helium 

can be injected into the system and monitored the gas leaks using detectors to identify the most 

probable locations of leaks.     

The first phase of the project did not use a flowable fill.  Construction only included a sand 

layer on top of the concrete slab.  Tubes were embedded in the sand layer.  Vehicle movement 

moved the bricks and settled into the sand layer.  Eventually the bricks got in contact with the 

tubing.  As vehicles moved over, the bricks started rubbing the tubes and puncturing them.  The 

problem recurred frequently enough to change the design to include a flowable fill when the 

pavement is exposed to vehicular traffic.  The design with a flowable fill is shown in Figure 5-35.  

The overall experience with the system led to the following recommendations: 

1. Include isolation valves at every block to break the system into smaller grids when needed.  

This helps identifying leaks much easier.   

2. Failure due to age have been seen in the plastic valves as early as 18 years of use.  Use of 

stainless valves for the headers would allow for a longer life span compared to the valves 

with plastic components.     

3. Add tap points at every block to help further expansion easier and less expensive.   
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5.4.5.2 Holland, Michigan 

Holland, Michigan, has the largest public owned snow melt system in the United States.  

The system was first completed in 1988 and had its first major expansion in 2004.  The expansion 

included a new farmer’s market, police station, and court building.  The heat source for the system 

comes from James De Young Power Plant.  Excess heat from the plant is captured and used to heat 

up water.  The water is directed to downtown Holland through 168 miles of tubing laid under the 

sidewalks and roads to melt snow on the surface of 450,000 ft2.  The system can melt snow at a 

rate of approximately one inch per hour at 15 – 20 0F (HBPW 2015). 

The snowmelt system in Holland was made possible through private-public collaboration.  

Mr. Edgar Prince donated $250,000.  Figure 5-36 shows a walkway condition in Holland, 

Michigan, during a snow storm. 

 

Figure 5-36.  A sidewalk without snow accumulation 

 

Holland uses different layering techniques for the sidewalk and street.  This is important 

because the difference in traffic loads require more protection for the pipes.  Figure 5-37 shows a 

typical cross-section of a sidewalk.  The only layers above the pipes are the sand medium and 

concrete pavers.  This layering technique allows easy access to the pipes for a repair.  Figure 5-38 

is a typical cross-section of a street, including the curb and gutter.  The street cross-section has two 

levels above the embedded pipes, adding more protection to the pipes.   

 

Figure 5-37.  Typical cross-section of a sidewalk   
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Figure 5-38.  Typical cross-section of a street, including curb and gutter 

 

Total capital costs used in 1988 for the first 167,000 ft2 was $827,183.  This cost does not 

include labor or related materials (such as laying of asphalt, installation of concrete pavers, gravel, 

etc.)  Error! Reference source not found.5-17 displays the area covered, length of pipes, and the e

nergy consumption of the system as of 2013.   

Table 5-17.  The Area Covered, Length of Pipes, and the Energy Consumption 

Area (ft2) Pipe (ft.) Energy (million BTU/hr) 

450,000 887,040 40 

 

As of 2013, the annual operation and maintenance costs are $50,000 and $7,000, 

respectively.  $40,000 of this is collected through special assessments each year.  Maintenance 

activities include (i) an annual flush to eliminate the potential of mud and silt accumulation, (ii) 

charging the system with city water, and (iii) repairing or replacing areas of poor performance. 

The system uses water instead of water-glycol mixture typically used in other systems.  The 

primary reason for using water in the system is that the power plant uses water from the lake 

Macatawa to cool the system down.  The hydronic system in Holland runs this water through the 

city before discharging it to the lake.  Hence, this has been a cost effective way to eliminate snow 

from walkways and pavements.  An advantage of using water is that the snowmelt system is not 

required to be 100% water tight because there is no risk of getting glycol mix with ground water 

due to leaks. 
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6 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 SUMMARY AND CONCLUSIONS 

Providing access and mobility for key installations and businesses located in cities become 

a challenge when there is limited public transport and non-motorized facilities.  The challenges are 

significant in cities that are subjected to severe winter weather conditions.  As per published data 

62% of millennials prefer to live in urban centers while 56% of millennials and 46% of active 

boomers prefer to live in walkable, technology-enabled cities where they have affordable and 

convenient transportation options regardless of the size of the city.  In addition to alternative 

affordable transportation options, 81% of millennials and 76% of active boomers prefer non-

motorized modes over cars for their daily activities.  Fifty six percent (56%) of millennials want 

to see improvements to sidewalks and bike lanes to enhance safety.  Lack of mobility can 

significantly affect the small and medium size cities economically due to migration of millennials 

to larger cities around the country.   

This project was initiated to synthesize infrastructure and technology for improving access 

to non-motorized traffic and mobility within cities while enhancing sustainability.  Improving 

access to sustainable mobility choices is a key aspect of developing livable cities.  This project 

scope is limited to identifying methods and infrastructure to promote walking and cycling in small 

cities.  The following is a list of topics discussed in this report: 

 With regards to promoting cycling in cities, bike-share program development and use of 

location-allocation models as planning tools are presented.   

 In many cities with adverse weather conditions, underground and above ground pedestrian 

systems are provided to encourage walking and cycling.  Hence, these two infrastructure 

options are explored during this study.   

 Providing energy efficient lighting systems to make pedestrians and cyclists feel safe to 

travel within cities is vital to improve mobility.  This report provides information on energy 

efficient lighting systems, cost of implementation, and planning tools.   

 In winter cities, providing snow and ice free streets and walkways promote walking and 

cycling.  Technologies used for such endeavors and implementation case studies are 

presented.   
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 Electricity needed to operate kiosks at bike-share stations, pedestrian lighting, and snow 

melting systems can be generated through renewable sources such as solar and wind.  

However, effective implementation of solar and wind powered systems require identifying 

the optimal locations for such technologies within the city environment.  Hence, this report 

presents a few tools that can be used for planning purposes.   

6.1.1 Bike-sharing 

This report presents bike-share program development process from preliminary planning 

to implementation, program evaluation, and the steps needed to ensure program sustainability.  In 

addition, the report presents the process of using ArcGIS and the available location-allocation 

models to identify optimum number of bike-share stations and locations for a city.  In order to 

demonstrate the process, a case study for City of Kalamazoo was developed and presented in 

Appendix B.  Also, two existing bike-share programs were reviewed and the successes and lessons 

learned were used to develop recommendations listed in Section 6.2. 

6.1.2 Underground Pedestrian Systems 

Underground Pedestrian Systems (UPS) are used in many cities to help public stay away 

from severe weather conditions.  During this study, two cities with UPS were reviewed to lean the 

funding sources, success, and lessons learned.  In general, funding was provided by private 

business owners.  However, once the systems are extended to cover a large portion of a city, 

maintenance is a challenge.  Even though, the exposure conditions in many small cities favor 

having UPS, implementation and maintenance may not be financially viable.  In small cities, 

streets are not overcrowded to motivate people to use underground structures.  Hence, 

implementation of UPS in small cities needs to be driven by the interest of the business owners to 

cater their business needs. 

6.1.3 Aboveground Pedestrian Systems (AGPSs) 

Similar to UPS, aboveground pedestrian systems (AGPSs) or skywalks are primarily 

funded by the private business owners because of their needs.  During this study, skywalk systems 

in Des Moines (Iowa), Cincinnati (Ohio), and Milwaukee (Wisconsin) were reviewed.  Out of the 

three, the successful ones are privately funded.  In small cities, streets are not overcrowded to 



Infrastructure and Technology for Sustainable Livable Cities 

112 

motivate people to use aboveground or underground structures.  Hence, implementation of 

skywalks in small cities needs to be driven by the interest of the business owners to cater their 

business needs.  A major drawback of having private entities funding and operating skywalks is 

the controlled hours of operation.  The skywalk may only remain open for a limited number of 

hours a day, making it inconvenient to the public.  However, this becomes a challenge only if the 

closed section becomes a bottleneck for the operation of the rest of the network. 

6.1.4 Pedestrian Lighting 

Pedestrians must be able to safely navigate through streets and walkways.  Current trend is 

to use LEDs to illuminate streets and walkways.  Even though the implementation cost is high, 

data has shown a potential for achieving about 50% cost reduction when LEDs with a 10-year 

service life are installed instead of HPS with 2-year service life.  Further, publish data indicate a 

potential payoff of the implementation cost in about 4 years.  LED technology is new and a lot of 

municipalities and cities are considering adopting the technology.  However, being a new 

technology, field performance of LEDs needs to be monitored to collect adequate data to justify 

future implementations.  DIALux is a software commonly used for lighting design.  As a 

feasibility study, this software can be used to evaluate suitable luminaire types and configurations 

for a specific site.  A large number of parameters needs to be considered when selecting and 

implementing a lighting system; thus, receiving the service of lighting professionals is advised.   

6.1.5 Wind and Solar Power Systems 

Street lighting to bike-share station kiosks are powered using solar energy.  However, 

reliability of such power sources is a question.  As documented during case study reviews, in many 

cases, batteries at solar powered stations needed to be replaced due to lack of charge.  This can be 

due to two reasons, either the system was not designed for the specific site or it was not located at 

the right place to have adequate solar exposure.  As shown in this report, there is a possibility to 

combine solar and wind power sources.  However, impact of shadows and wind flow patterns need 

to be evaluated in order to select the optimum location for installation.  Primarily, technology is 

developed adequately to generate power using solar and wind energy.  The key is to design a 

system for site specific conditions and use currently available simulation tools to identify optimal 

locations for such infrastructure.   
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6.1.6 Snow-melting Technologies 

Electrical systems, hydronic systems, and infrared heaters were reviewed.  Hydronic 

systems have been implemented in several cities and adequate information is available to develop 

such systems for other cities.  Two such systems were reviewed during this study and successes 

and lessons learned were documented.  Infrared heaters are used at many facilities including bus 

shelters.  Snow-melting system operation can be automated using temperature and humidity 

sensors.  Cost-benefit analysis data for infrared heaters was not adequately documented in 

literature.  Also, there was no discussion on health impacts of using infrared heaters. 

6.2 RECOMMENDATIONS 

 Implement ArcGIS with maximize facilities and minimize facilities models as a decision-

support tool to identify the optimal locations for bike-share stations.  However, user 

interaction is extremely important to finalize the list of locations after a careful analysis 

of the results in the context of the city. 

 Evaluate the impact of shadows before installing solar powered infrastructure. 

 Evaluate the possibility of combining solar and wind power to enhance the reliability of 

renewable power sources.  

 Implementation of underground and above ground pedestrian facilities in small cities needs 

to be evaluated against the needs of businesses in the cities. 

 LED has shown a good return on investment and needs to be considered for pedestrian and 

street lighting.  DIALux software can be used to evaluate lighting configurations and 

identify the efficient luminaries for a specific application. 

 Several cities are successfully in implementing hydronic systems to eliminate snow 

accumulation on streets and walkways.  It is recommended to include isolation valves and 

tap points at every block to break a system into smaller grids to help with maintenance and 

future expansion.  Further, use of stainless steel valves are recommended over plastic 

valves for enhanced durability.  

 It is recommended to conduct a cost-benefit analysis of using infrared heaters for melting 

snow at public places such as bus shelters. 
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AC  Alternating Current 

ACS  American Community Survey 

ADA  Americans with Disabilities Act 

ALRT  Automated Light Rapid Transit 

AML  Arc Macro Language 

APS  Aboveground Pedestrian Systems 

AST  Apparent Solar Time 

 

B 

BTS  Bureau of Transportation Statistics 
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CEC  Clean Energy Coalition 

CDC  Centers for Disease Control 

CFD  Computational Fluid Dynamic 

CIE  Commission on Illumination 

CMAQ Congestion Mitigation and Air Quality Improvement 

CTPP  Census Transportation Planning Products 
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DC  Direct Current 

DDA  Downtown Development Authority 

DPM  Detroit People Mover 

DOE  Department of Energy 

DOT  Department of Transportation 

DoD  Depth of Discharge 

 

E 

ET  Equation of Time 
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HA  Hour Angle 
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HID  High Intensity Discharge 

HPS  High Pressure Sodium 
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IEA  International Energy Agency 
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LED  Light Emitting Diodes 

LES  Large Eddy Simulation 

LST  Local Standard Time 

LSTM  Local Longitude of Standard Time Meridian 

Ly  Langley 
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MN  Minnesota 

MPPT  Maximum Power Point Tracking 

MV  Mercury Vapor 

 

N 

NMP  Non-motorized Transportation Plan 
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PRT  Personal Rapid Transit 

PV  Photovoltaic 
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RFID  Radio-Frequency Identification Device  
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TCSP  Transportation, Community and System Preservation Program 

TEA  Transportation Enhancement Activities 

TIGER  Transportation Investment Generating Economic Recovery 

TRC-LC Transportation Research Center for Livable Communities 
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UGP  Underground Printing 

U-M   University of Michigan 

UOfM  University of Michigan 

UPS  Underground Pedestrian Systems 
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UTC  University Transportation Centers 
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Vmp   Voltage at Maximum Power 

 

 



Infrastructure and Technology for Sustainable Livable Cities 

131 

 

 

 

 

 

 

 

 

 

APPENDIX B: IMPLEMENTATION EXAMPLE 



Infrastructure and Technology for Sustainable Livable Cities 

132 

B.1      BIKE-SHARE PROGRAM IMPLEMENTATION CASE STUDY 

B.1.1   Service Area Selection 

The size and location of a bike share system is related to the availability of funds and goal of the 

system.  The available funds define the size of the system.  One of the most common characteristics 

found in numerous bike-sharing programs is that dense areas have been used as reference points 

to identify the areas for an initial bike-share program.  The selection of the initial service area is 

of great importance.  The proper selection of the initial service area will result in program success, 

as these areas attract the most users and sponsorship. 

Bike share ridership is influenced by the density and mix of land uses, or in other words, 

bike-share works best where many people live, work, play, and take transit.  These characteristics 

will help to maximize early success. Downtown Kalamazoo provides a dense, mixed use 

environment to support an initial bike share launch in Kalamazoo.  Launching the system initially 

in the highest demand areas will accelerate visible success, maximize the chance of the system 

being profitable and increase the likelihood of future expansion.  

Following groups represent the population in Downtown Kalamazoo who can utilize a bike sharing 

program: 

 Students: many students do not have access to a car, and students often face limitations on 

the ability to maintain and store bicycles. 

 Visitors: people visiting the city and colleges may wish to explore multiple areas of the 

community without the trouble of locating parking facilities, or they may arrive without a 

vehicle and appreciate the mobility provided by a bike share program. 

 Commuters: employees who drive into Downtown Kalamazoo may want to make short 

trips during the workday to destinations throughout the city or use bike share program for 

exercise and recreation during lunch or other breaks. 

 Residents: bike sharing program can effectively increase the range of destinations 

accessible without a car to local residents. 

The following section defines the demand in Downtown Kalamazoo as population, employment, 

and locations of interest.  These demand criteria will be utilized for the analysis and locating 

stations. 
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B.2      DEMAND CRITERIA 

B.2.1   Population 

As per 2014 Census data, population within Kalamazoo city is 75,922.  Downtown 

Kalamazoo, uncommon among cities of this size, is a true urban center with 600 apartments and 

at least 1,200 residents.  Figure B- 1 shows the distribution of population density in Downtown 

Kalamazoo (as per the Topologically Integrated Geographic Encoding and Referencing - TIGER 

system).  The TIGER file is a census tract containing information such as boundaries, population 

counts, housing unit counts, median age, population 16 years and over, population 65 years and 

over, race, relationship, average household size, and etc.  Downtown population density is 

represented by Housing Unit Counts.  As shown in Figure B- 1, a majority of housing units are 

located in the southern side of the city.   For this study, number of housing units is used to represent 

the demand for bike-share station planning.  New developments represent future demand and 

included in demand calculation.  Figure B- 2 shows the percentage of households with individuals 

of 65 years and older.  Only about 15 % of households within downtown area has individuals of 

65 years or older.  Thus, it is safe to say that the downtown population is young.  This is an 

important factor because early adopters of bike-share programs tend to be the young riders.   
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Figure B- 1.  Distribution of housing units in downtown Kalamazoo 
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Figure B- 2.  Percentages of households with individuals of 65 years and older  

B.2.2   Employment 

Downtown Kalamazoo has over 1,000 businesses employing nearly 13,000 people 

(Downtown Kalamazoo 2014) (Figure B- 3).  Three colleges located around downtown area have 

an enrollment over 40,000 students.  Furthermore, downtown Kalamazoo hosts over 120,000 

visitors every summer.  These employers, institutions, and events will serve as important trip 

generators and attractors for a bike-share program.  In addition, these major employers could be 

possible sponsors or offer corporate membership to promote wellness and/or travel demand 

management programs.  Bike sharing, together with public transit, could significantly increase 

residents and commuters’ access to jobs.  Thus it is of great importance to consider these locations 

during station location planning. 

Figure B- 3 shows the distribution of employment density in Downtown Kalamazoo as per the 

Census Transportation Planning Products (CTPP).  The CTPP data is based on 2006-2010 5- year 

American Community Survey (ACS) data.  ACS is an ongoing activity that provides data by giving 

communities the current information needed to plan investments and services.  Therefore this data 
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is useful for transportation analysts and planners to understand origin and destination of people 

commuting to downtown and commuting patterns (AASHTO 2016).  The data file contains three 

main categories residence, workplace and flows. The category of interest is workplace.  Workplace 

is further broken down into workers 16 years and over, workers 16 years and over who did not 

work at home and workers 16 years and over in households. For this analysis, the total worker 16 

years and over who did not work at home data was utilized.  

 

Figure B- 3.  Employment distribution 

B.2.3   Location of Interest 

Retail and commercial areas are often trip attractors for bike share users.  Therefore, 

providing bike-share services in areas of major retail and commercial activity increases the chances 

of bike share use.  As mentioned before, downtown Kalamazoo has more than 1,000 businesses.  

Downtown Kalamazoo has a 14 screen movie house, 23 live performance stages, a museum, a 

public library, and many more attractions making it a true urban center people (Downtown 
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Kalamazoo 2014).  Further, downtown continues to grow in the entertainment and restaurant 

industry. Also, the residential vacancy rate is less than 1.5 %.  As shown in Figure B- 4, downtown 

has a high concentration of retail and commercial areas, making a good location for an initial bike 

share program.  Another locations of interest are the residential areas.  Residential areas can, on 

the other hand, be trip generators.  The categories included in the analysis are apartment 

complexes, banks, bars, churches, clothing stores, college campuses, companies, government 

institutions, hospitals, pharmacies, parks, parking structures, restaurants, schools, and theaters. All 

the other businesses that do not belong to the above listed categories are listed under general 

commercial entities.  Altogether, a total of 244 locations of interest are identified within and around 

the downtown area.  

 

Figure B- 4.  Locations of interest within and around downtown Kalamazoo 
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B.3      CRITERA FOR SELECTING CANDIDATES LOCATIONS FOR STATIONS 

B.3.1   Minimum Size of a Program 

Effectiveness of a bike sharing program depends on its size.  A system with 10 stations 

spread over at least approximate of 2 square mile (five square kilometers) area is considered as the 

absolute minimum to provide an effective mix of origin and destination trips, and to justify the 

cost of operation (Alta Planning and Design Living AB 2012).   

The following are key points to be considered when sizing a system: 

 The system size is selected to cover an area within which cycling becomes more attractive and 

convenient than walking. 

 The system must offer numerous origins and destinations to promote bicycle use. 

 The system should have adequate number of stations to provide reasonable access, minimize 

walking distance, and discourage driving.  

B.3.2   Area of Influence 

Many bike share program have used location of influence as a point of reference to locate 

potential stations.  These areas are often called “attractors” and “generators” as these areas are 

most likely to draw or generate trips.  Several of such locations are identified for Kalamazoo 

downtown area and presented in subsequent sub-sections.  

B.3.1.1 WMU School of Medicine  

The Western Michigan University School of Medicine was established in August 2012 

with 54 medical students and 200 residents.  It is located on Portage Street, Downtown Kalamazoo 

(Figure B- 5). 



Infrastructure and Technology for Sustainable Livable Cities 

139 

  

Figure B- 5.  WMU School of Medicine 

B.3.1.2 Arcadia Common Campus  

Arcadia Common Campus is located on Rose Street, Downtown Kalamazoo.  It enrolls 

3,000 students each semester.  The campus includes Anna Whitten Hall (classroom and student 

services building), the Center for New Media, the Kalamazoo Valley Museum, and parking for all 

enrolled students (Figure B- 6).  

  

Figure B- 6.  KVCC Arcadia Common Campus 

B.3.1.3 Bronson Hospital 

The Bronson Hospital was founded in 1900 and located on John Street, Downtown 

Kalamazoo (Figure B- 7).  Bronson Hospital has more than 3,500 employees. Also, Bronson has 

expressed the need to provide alternatives to driving in order to maximize the parking spaces at 

the hospital premises available to patients.  By having a bike share station near the hospital, 
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employees will be able to utilize bicycles to commute between work and nearby parking structures, 

as well between work and downtown for shopping and restaurants.  

 
 

Figure B- 7.  Bronson Hospital 

B.3.1.4 Radisson Hotel  

The Radisson Hotel is a 4-star hotel located on West Michigan Avenue, Downtown 

Kalamazoo (Figure B- 8).  The hotel has 340 hotel rooms, 22 event rooms and ballroom that can 

accommodate up to 600 guests.  Every year, the Radisson Hotel hosts many events and 

conferences. 

  

Figure B- 8.  Radisson Hotel 

B.3.3   Non-motorized Facilities 

During bike-share program development, it is expected to utilize existing infrastructure to 

minimize implementation cost.  Availability of wide shared-lanes, bike lanes, trails, shared–use 
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paths, paved shoulders, signage, lighting conditions, and well maintained roads is key to a 

successful program. 

When planning a bike-share program and station locations, it is important to coordinate with 

planned non-motorized improvements in the area.  In 2015, Kalamazoo Non-motorized 

Transportation Plan (NMP), which was last updated in 1998, was revised after conducting a series 

of workshops to obtain input from non-motorized users in the city (The City of Kalamazoo 2015).  

The updated plan included all the existing and future non-motorized facilities as shown in Figure 

B- 9 and Figure B- 10.  

 

Figure B- 9.  Existing non-motorized facilities 
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Figure B- 10.  Future non-motorized facilities 

With the development in downtown area, it is recommended to start placing candidate stations on 

existing as well as on planned facilities (Figure B- 11). 



Infrastructure and Technology for Sustainable Livable Cities 

143 

 

Figure B- 11.  Candidate stations located in existing and planned non-motorized facilities 

B.3.4   Intermodality Possibility 

Accessibility as well as the success of a bike-share program improve when it is integrated 

with traditional transportation systems.  Transit stops are good candidates for bike share stations 

and allow transit users to extend their trips. Bike share system can be a complement to transit stop 

as it enables the users to complete their first or last segment of the trips in areas where public 

transit is not operational. Thus, a bike-share program can provide greater flexibility to commuters 

through intermodality.  

Kalamazoo Metro Transit has 20 regularly scheduled bus routes operating at 15, 30, and 60 

minutes intervals depending on the route and the time of day.  There are currently 36 buses in the 

service.  According to the available ridership profile data, the transit system users include 16 to 22 

years (32%), 23 to 42 years (36%), and 43 to 61 years (24%) (Kalamazoo Metro Transit 2013).  

The data shows that transit users are mostly young, which is often the dominant age group of bike-

share users.  Figure B- 12 shows the bus stations located in Downtown Kalamazoo.  Efforts should 

be made to create an intermodality between transit and bike-share system to provide access to users 

those who live in unserved areas by busses such that the first/last segment of their trips are 

completed using a bicycle. 
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Figure B- 12.  Bus stations in Downtown Kalamazoo 

B.3.5   Topography 

Topography of an area is a crucial decision making factor when locating bike-share stations 

because users dislike grades more than 4%, and completely evade routes with a grade greater than 

8%.  Hence, an area with no more than 4% grade along bicycle routes is ideal for implementation 

of a bike-share program (Midgley 2011).  The topography needs to be considered when scheduling 

bicycle redistribution because the stations downhill will have more bicycles very often.  The 

topography of Downtown Kalamazoo is shown in Figure B- 13.  As indicated in green, a majority 

of the area has a grade less than or equal to 4%.  However, a majority of the area located west of 

downtown has a grade greater than 4%.   
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Figure B- 13.  Topology of Downtown Kalamazoo 

B.3.6   Desired Walking Distance 

Desired walking distance is an important parameter for planning bike-share station 

locations.  It is considered as a constraint for analysis. Thus, desired walking distance is used as 

the impedance cutoff in GIS.  According to State of the Practice and Guide to Implementation 

(FHWA 2012) stations should be located no more than ½  mile apart (FHWA 2012).  Research 

shows that a typical walking distance of about ¼  of a mile takes about 5 minutes (Alta Planning 

and Design Living AB 2013).  After evaluating literature on typical walking distances, Schoner et 

al. (2012) recommended using a ¼ -mile walking distance.  After evaluating literature 

recommendations and layout of downtown businesses and establishments, a ¼ -mile walking 

distance to each station was selected for Downtown Kalamazoo.  Figure B- 14 shows the area 

covered by a selected number of bike-share stations with a ¼ -mile walking distance.  
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Figure B- 14.  Area covered by a selected number of stations with a ¼ -mile walking distance 

 

B.4      ANALYSIS 

During the planning process, the number of bike stations is optimized.  However, the 

analysis process requires defining a layout of candidate stations based on the criteria described in 

section B.3.  The purpose of this study is to locate a number of bike- share stations to satisfy the 

demand within the downtown area as an initial phase of an implementation program.  In order to 

optimize the number of bike-share stations, the demand based on the distribution of population, 

employment, and locations of interest is considered.   However, there is no predefined percentage 

of demand to be covered.  Hence, the intention is to satisfy the demand as much as possible by 

using a minimum number of bike-share stations starting with the predefined candidates. After 

considering the parameter applicable for downtown Kalamazoo, thirty (30) stations were selected 

as the candidates for further analysis (Figure B- 15). 
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Figure B- 15.  Candidate bike stations assigned for preliminary analysis 

 

The population and employment default data files (as presented in sections B.2.1 and B.2.2) 

are in polygons, where the population and/or employment within a polygon is assumed to be the 

same.  In order to execute location-allocation models in ArcGIS, it is necessary to present demand 

and facilities data as point files.  In ArcGIS, the geoprocessing tool feature to point allows user to 

create points from the representing polygons (Figure B- 16). The point are the centroid of the 

corresponding polygon. This process is performed to match the framework needed to support 

location-allocation model on ArcGIS, enduring reliable results.  After point data files are 

developed for each demand type, location of bike-share stations for each demand type is identified 

using location-allocation models.  Once the station locations are identified for each demand type, 

the stations that are common to all the demand types are selected as the optimum distribution of 

stations.   
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a) Default polygon data file 

 
b) Point file 

Figure B- 16.  Polygon and point data files 

B.4.1   Maximize Coverage Analysis 

Maximize coverage analysis allows limiting the number of stations to be allocated from a 

set of candidates.  The number of stations is not limited for this study since there is no budgetary 

constraint defined.  Once the analysis is executed with a predefined impedance cutoff, analysis 

continues by incrementally adding bike-share stations until the maximum number of stations are 

allocated to cover a specific demand type.  In the analysis performed for this study, impedance 

cutoff is defined as the walking distance limit of a ¼ - mile.  The following sections describe the 

analysis performed for each demand type, and present the number of bike-share stations and station 

locations. 

B.4.1.1 Population Demand 

In the default data file format, population density is represented with polygons. One of the 

challenges of allocating a bike-share station for a demand defined by polygon data file and an 

impedance cutoff is that if the centroid of the polygon is not within the cutoff limit from a candidate 

station, the demand is not allocated in the analysis. This is the reason why only one station (closest) 

was allocated by the model to serve the only demand point that was within the desired walking 

distance from every candidate station.  The bike-share station chosen to serve the population based 

on maximize coverage model is symbolized with the red-star in Figure B- 17. The total distance 

between centroid of polygon and bike station is 0.15 mile.   
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Figure B- 17.  Maximize coverage for population demand 

B.4.1.2 Employment Demand 

In the default data file format, employment density is represented with smaller polygons 

compared to population data file. Consequently, a more dense distribution of the centroids of the 

polygons is resulted while the population data file gives a sparse distribution. Because of that, 

there is a high chance of covering a large percentage of employment demand located within ¼  

mile walking distance to a bike share station. Based on maximize coverage, a maximum number 

of 13 out of 30 stations can be allocated to demand based on the desired walking distance 

constraint. The stations allocated a total of 16 centroids (Figure B- 18).  
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Figure B- 18.  Maximize coverage for Employment Demand 

B.4.1.3 Location of Interest demand 

Downtown Kalamazoo has a high concentration of retail, commercial and residential areas. 

These was presented in section B.2.3. These locations are presented in point files. The number of 

location of interest to be allocated is 244. The maximum amount of bike-share station that can 

allocate, at least, a point of interest is 25 out of 30 (Figure B- 19). The number of locations of 

interest allocated was 190. This means that 54 locations are outside of the desired walking distance 

from each bike-share station candidate.  
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Figure B- 19.  Maximize coverage for Location of Interest Demand 

B.4.2   Minimize Facilities Analysis 

Minimize facilities models provides the minimum number of facilities needed so no 

demand is left within the desired walking distance specified, thus minimize facility model provides 

the lower bound of the analysis. For this project, as mentioned before, the desired walking distance 

to the specific station is defined by the cut-off distance of ¼  of a mile. In contrast to maximize 

coverage model, minimize facilities does not allow users to specify the number of location to be 

allocated, therefore the process only consist of providing the demand to be allocated, the candidate 

bike-share stations  and finally the impedance cutoff.  The following sections describe the analysis 

performed for each demand type, and present the number of bike-share stations and station 

locations. 

B.4.2.1 Population Demand 

As expected, the same result obtained in maximize coverage analysis model was obtained 

from minimize facility model. The same challenge is faced due to the fact that the point of 

allocation is in the centroid of the polygon. Therefore, only one station is found to be feasible to 

allocate the population demand (Figure B- 20).  
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Figure B- 20.  Minimize facilities for Population demand 

B.4.2.2 Employment Demand 

The minimize facilities model for employment demand allocated demand to eight (8) 

stations. The stations allocated a total of 16 centroids. Meaning that, 16 polygons representing 

employment densities can be efficiently served with a minimum of 8 stations out of 30 pre-defined 

candidates (Figure B- 21).  
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Figure B- 21.  Minimize facilities for Employment demand 

B.4.2.3 Location of Interest Demand 

The minimize facilities model location of interest allocated demand to eleven (11) stations. 

The stations allocated a total of 190 location of interest.  Meaning that, out of the 30 pre-defined 

bike-share candidates, only 11 stations will be able to allocate demand based on candidates’ 

locations and desired walking distance (Figure B- 22).  

 

Figure B- 22.  Minimize facilities for Location of Interest Demand 
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B.4.3   Optimal Candidates 

The optimal candidates are the candidates that satisfy the population, employment and 

location of interest demand. As each density demand is obtained from their corresponding default 

data file, the analysis to determine optimal candidates has to be executed separate. These results 

in six (6) sets of optimal candidates. Three sets covering each demand using maximize coverage 

and minimize facilities.   Bike-share stations candidates are labeled by numbers as shown in Figure 

B- 23.  Table B- 1 presents the optimal bike station candidates under each demand and model.  In 

order to come up with the set of optimal candidates that serves each demand type,  the station that 

satisfied two (2) or more demand type was selected as optimal for this analysis. For example, in 

Table B- 1 station 4 satisfies demand for employment and location of interest. Thus, it is selected 

as optimal candidate.  

  

 

Figure B- 23.  Bike-share station candidate labels 
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Table B- 1.  Location-Allocation Model Results 

 Population Employment Loc. of interest 
Optimal candidates 

Station Max Min Max Min Max Min 

1     √   

2 √ √ √  √ √ √ 

3        

4   √  √  √ 

5   √ √ √ √ √ 

6   √ √    

7   √ √ √ √ √ 

8   √ √ √ √ √ 

9     √   

10   √  √ √ √ 

11   √  √ √ √ 

12        

13        

14   √ √ √ √ √ 

15     √ √  

16     √   

17   √ √ √ √ √ 

18     √   

19     √   

20     √   

21   √ √ √ √ √ 

22   √  √  √ 

23     √   

24     √   

25    √ √   

26     √   

27   √  √ √ √ 

28     √   

29        

30        

 

After obtaining the set of optimal candidates, their locations are double checked to make 

sure these chosen stations are located by the areas of influence (attractors/generators) discussed in 

Section B.3.2, within the desired walking distance of  ¼  mile and near bus stations (Figure B- 24 

and Figure B- 25). If the set of optimal candidates satisfy the location and distance factors 

aforementioned, then these candidates become the set of final stations (Table B- 2). Otherwise, the 

set of optimal candidates are reconsidered and other chosen stations presented in Table B- 1 are 

evaluated until a set of final stations is found. If no stations are found to meet all location and 
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distance factors, bike-share candidates can be relocated and re-analyzed until all criteria and 

analysis factors are met. The final set of optimal stations is presented in Figure B- 26. 

 

Figure B- 24.  ¼  miles buffer from each station 
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Figure B- 25.  ¼  miles buffer from station to nearest bus stop 

Table B- 2.  Selection of the Optimal Candidates 

Optimal  
station Accepted/Discarded/inserted Reason 

2 Accepted - 

4 Accepted - 

5 Accepted - 

7 Accepted - 

8 Accepted - 

10 Accepted - 

11 Accepted - 

14 Discarded Did not meet 1/4 mile buffer from each other 

17 Discarded 
Switched for Bike Station 1 to serve generator 
Bronson Hospital 

21 Accepted - 

22 Accepted - 

24 Inserted 
To serve major attractor/generator Arcadia 
Creek Festival Place 

27 Accepted - 
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Figure B- 26.  The set of final stations 

As stated before, the challenge with the Network Analyst, extension of GIS, is that the 

demand and facilities to be analyzed have to be in point data. This is a major constraint when trying 

to allocate population and employment demand. Thus, to better show the area being served by 

each station within the desired walking distance, an extension of GIS called service area was 

utilized. Service area presents the region that encompassed all accessible streets within a specified 

impedance. The impedance for service area is the desired walking distance.  Figure B- 27, B-28 

and B-29 presents the service area covered by the final stations for the population, employment 

and location of interest demand with a ¼  mile impedance cutoff.  Each station covers about 0.1 

square mile.   
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Figure B- 27.  Service area for population demand 

 

 

Figure B- 28.  Service area for employment demand 
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Figure B- 29.  Service area for location of interest demand 


